login
A154383
Powers of 4 at even indices, two times powers of 4 at odd indices.
3
1, 0, 4, 2, 16, 8, 64, 32, 256, 128, 1024, 512, 4096, 2048, 16384, 8192, 65536, 32768, 262144, 131072, 1048576, 524288, 4194304, 2097152, 16777216, 8388608, 67108864, 33554432, 268435456, 134217728, 1073741824, 536870912, 4294967296, 2147483648, 17179869184, 8589934592, 68719476736, 34359738368, 274877906944
OFFSET
0,3
FORMULA
a(2n) = A131577(2n+1); a(2n+1) = A131577(2n) (Consecutive terms of A131577 swapped).
a(2n) = A000302(n); a(2n+1) = A000302(n)/2, n>0.
a(n) = 4*a(n-2), n>3.
a(2n+1) = a(2n)/2, n>0.
G.f.: (1 + 2*x^3)/((1-2*x)*(2*x+1)). - R. J. Mathar, May 21 2009
a(n) = (5 + 3*(-1)^n)*2^(n-3), n>1. - R. J. Mathar, May 21 2009
E.g.f.: (1/4)*(-2*x + sinh(2*x) + 4*cosh(2*x)). - G. C. Greubel, Sep 15 2016
MATHEMATICA
Join[{1, 0}, Table[(5 + 3*(-1)^n)*2^(n - 3), {n, 2, 20}]] (* G. C. Greubel, Sep 15 2016 *)
PROG
(Magma) [1, 0] cat [(5+3*(-1)^n)*2^(n-3): n in [2..40]]; // Vincenzo Librandi, Sep 16 2016
CROSSREFS
Sequence in context: A348685 A110485 A240988 * A022664 A316463 A167784
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jan 08 2009
EXTENSIONS
Edited by R. J. Mathar, May 21 2009
STATUS
approved