login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110483
Continued fraction for seventh root of 2.
1
1, 9, 1, 1, 1, 1, 5, 46, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 22, 48, 1, 1, 5, 4, 1, 1, 1, 1, 1, 1, 2, 8, 1, 6, 1, 21, 1, 1, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 2, 2, 2, 3, 1, 26, 1, 16, 1, 4, 21, 1, 2, 1, 1, 1, 5, 3, 7, 21, 3, 1, 1, 1, 8, 1, 8, 1, 4, 1, 24, 1, 3, 1, 6, 1, 2, 1, 5, 5, 6, 1, 12, 1, 8, 2, 2, 1, 3, 1, 1, 2
OFFSET
0,2
LINKS
MATHEMATICA
ContinuedFraction[Surd[2, 7], 100] (* Harvey P. Dale, Aug 11 2017 *)
PROG
(Haskell) import Ratio
floorRoot :: Integer -> Integer -> Integer
floorRoot k n | k>=1 && n>=1 = h n where h x = let y=((k-1)*x+n`div`x^(k-1))`div`k in if y<x then h y else x
intFrac :: Rational -> (Integer, Rational)
intFrac x = let ((a, b), ~(q, r)) = ((numerator x, denominator x), divMod a b) in (q, r%b)
cf :: Rational -> Rational -> [Integer]
cf x y = let ((xi, xf), (yi, yf)) = (intFrac x, intFrac y) in if xi==yi then xi : cf (recip xf) (recip yf) else []
y = 2^512 -- increase to get more terms, decrease to get a quick answer
(k, n) = (7, 2) -- compute continued fraction for k-th root of n
main = print (let x = floorRoot k (n*y^k) in cf (x%y) ((x+1)%y))
CROSSREFS
Sequence in context: A087966 A087968 A340365 * A348734 A010164 A006084
KEYWORD
cofr,nonn
AUTHOR
Paul Stoeber (pstoeber(AT)uni-potsdam.de), Sep 09 2005
STATUS
approved