Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Aug 29 2017 19:10:56
%S 1,9,1,1,1,1,5,46,1,3,2,1,1,3,1,1,2,1,22,48,1,1,5,4,1,1,1,1,1,1,2,8,1,
%T 6,1,21,1,1,1,1,1,6,1,1,3,3,1,1,2,2,2,3,1,26,1,16,1,4,21,1,2,1,1,1,5,
%U 3,7,21,3,1,1,1,8,1,8,1,4,1,24,1,3,1,6,1,2,1,5,5,6,1,12,1,8,2,2,1,3,1,1,2
%N Continued fraction for seventh root of 2.
%H G. C. Greubel, <a href="/A110483/b110483.txt">Table of n, a(n) for n = 0..5000</a>
%t ContinuedFraction[Surd[2,7],100] (* _Harvey P. Dale_, Aug 11 2017 *)
%o (Haskell) import Ratio
%o floorRoot :: Integer -> Integer -> Integer
%o floorRoot k n | k>=1 && n>=1 = h n where h x = let y=((k-1)*x+n`div`x^(k-1))`div`k in if y<x then h y else x
%o intFrac :: Rational -> (Integer,Rational)
%o intFrac x = let ((a,b),~(q,r)) = ((numerator x,denominator x),divMod a b) in (q,r%b)
%o cf :: Rational -> Rational -> [Integer]
%o cf x y = let ((xi,xf),(yi,yf)) = (intFrac x,intFrac y) in if xi==yi then xi : cf (recip xf) (recip yf) else []
%o y = 2^512 -- increase to get more terms, decrease to get a quick answer
%o (k,n) = (7,2) -- compute continued fraction for k-th root of n
%o main = print (let x = floorRoot k (n*y^k) in cf (x%y) ((x+1)%y))
%Y Cf. A002945, A002950.
%K cofr,nonn
%O 0,2
%A Paul Stoeber (pstoeber(AT)uni-potsdam.de), Sep 09 2005