login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110310
Expansion of (1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)).
5
1, -7, 36, -173, 827, -3960, 18973, -90907, 435564, -2086913, 9998999, -47908080, 229541401, -1099798927, 5269453236, -25247467253, 120967883027, -579591947880, 2776991856373, -13305367333987, 63749844813564, -305443856733833, 1463469438855599, -7011903337544160
OFFSET
0,2
FORMULA
a(n+2) = - 5*a(n+1) - a(n) - (-1)^n*A109265(n+3).
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, Apr 30 2019
a(n) = (1/2)*(3*ChevyshevU(n, -5/2) - ChebyshevU(n, -1/2)). - G. C. Greubel, Jan 02 2023
MAPLE
seriestolist(series((1-x+x^2)/((x^2+x+1)*(x^2+5*x+1)), x=0, 25));
MATHEMATICA
LinearRecurrence[{-6, -7, -6, -1}, {1, -7, 36, -173}, 40] (* G. C. Greubel, Jan 02 2023 *)
PROG
(PARI) Vec((1-x+x^2)/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, Apr 30 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2)/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023
(SageMath)
def U(n, x): return chebyshev_U(n, x)
def A110310(n): return (1/2)*(3*U(n, -5/2) - U(n, -1/2))
[A110310(n) for n in range(41)] # G. C. Greubel, Jan 02 2023
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Jul 19 2005
STATUS
approved