login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A246417 Homomorphic inverse images of elementary h-ary relations. 1
0, 0, 1, 7, 36, 171, 813, 4012, 25931, 342263, 6498746, 116477549, 1839530421, 26071946330, 339710531761, 4165394873379, 50578180795388, 717354862704287, 15348610400624113, 466529833772501084, 15332096138370552335 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Corresponds to r_6(k) in the Rosenberg paper.
REFERENCES
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian) Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622.
LINKS
Ivo Rosenberg, The number of maximal closed classes in the set of functions over a finite domain, J. Combinatorial Theory Ser. A 14 (1973), 1-7.
Ivo Rosenberg and N. J. A. Sloane, Correspondence, 1971
E. Ju. Zaharova, V. B. Kudrjavcev, and S. V. Jablonskii, Precomplete classes in k-valued logics. (Russian), Dokl. Akad. Nauk SSSR 186 (1969), 509-512. English translation in Soviet Math. Doklady 10 (No. 3, 1969), 618-622. [Annotated scanned copy]
FORMULA
a(n) = Sum_{h^m <= k, h >= 3, m >= 1} (((-1)^h / (m! * (h!)^m)) * Sum_{L=1..h^m} (-1)^L * binomial(h^m, L) * L^n). - Sean A. Irvine, Aug 25 2014
CROSSREFS
Cf. A002826.
Sequence in context: A099455 A102053 A058681 * A110310 A054493 A368575
KEYWORD
nonn
AUTHOR
Sean A. Irvine, Aug 25 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 17 23:36 EDT 2024. Contains 375991 sequences. (Running on oeis4.)