login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108814
Numbers k such that k^4 + 4 is semiprime.
5
3, 5, 15, 25, 55, 125, 205, 385, 465, 635, 645, 715, 1095, 1145, 1175, 1245, 1275, 1315, 1375, 1565, 1615, 1675, 1685, 1965, 2055, 2085, 2095, 2405, 2455, 2535, 2665, 2835, 2925, 3135, 3305, 3535, 3755, 3775, 4025, 4155, 4175, 4365, 4605, 4615, 4735, 4785
OFFSET
1,1
COMMENTS
Except for the first, all the terms above generate brilliant numbers.
Numbers n such that n - 1 + i and n + 1 + i are (twin) Gaussian primes, see Shanks. - Charles R Greathouse IV, Apr 20 2011
LINKS
Daniel Shanks, A Note on Gaussian Twin Primes, Mathematics of Computation 14:70 (1960), pp. 201-203.
FORMULA
a(k) = A096012(k) + 1. (Because n^4+4 = ((n-1)^2+1)((n+1)^2+1).) - Jeppe Stig Nielsen, Feb 26 2016
MATHEMATICA
Select[Range[5000], PrimeOmega[#^4+4]==2&] (* Harvey P. Dale, Sep 07 2017 *)
PROG
(PARI) forstep(n=1, 1e5, 2, if(isprime(n^2-2*n+2) && isprime(n^2+2*n+2), print1(n", "))) \\ Charles R Greathouse IV, Apr 20 2011
(Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..5000] | IsSemiprime(n^4+4)]; // Vincenzo Librandi, Apr 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Jul 10 2005
STATUS
approved