login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057781
a(n) = n^4+4 = (n^2-2*n+2)*(n^2+2*n+2) = ((n-1)^2+1)*((n+1)^2+1).
4
4, 5, 20, 85, 260, 629, 1300, 2405, 4100, 6565, 10004, 14645, 20740, 28565, 38420, 50629, 65540, 83525, 104980, 130325, 160004, 194485, 234260, 279845, 331780, 390629, 456980, 531445, 614660, 707285, 810004, 923525, 1048580, 1185925
OFFSET
0,1
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, MA, 1997, Vol. 1, exercise 1.2.1, Nr. 11, p. 19. [From Reinhard Zumkeller, Apr 11 2010]
FORMULA
G.f.: -(5*x^4-5*x^3+35*x^2-15*x+4) / (x-1)^5. - Colin Barker, Mar 29 2013
a(n) = A002523(n) + 3.
a(n) = A002522(n-1) * A002522(n+1).
Sum_{k=0..n} A033999(k)*A016755(k)/a(k) = A033999(n)*(n+1)/A053755(n+1), see Knuth reference. - Reinhard Zumkeller, Apr 11 2010
a(n) = (n^2)^2 + 2^2 = (n^2-2)^2 + (2*n)^2. - Thomas Ordowski, Sep 15 2015
a(n) = A272298(3*n)/3^4. - Bruno Berselli, Apr 29 2016
Sum_{n>=0} 1/a(n) = (Pi*coth(Pi) + 1)/8. - Amiram Eldar, Oct 04 2021
MATHEMATICA
Table[n^4+4, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {4, 5, 20, 85, 260}, 40] (* Harvey P. Dale, Aug 20 2020 *)
PROG
(Magma) [n^4+4: n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
(PARI) first(m)=vector(m, i, i--; i^4+4) \\ Anders Hellström, Sep 15 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Nov 04 2000
STATUS
approved