login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k^4 + 4 is semiprime.
5

%I #32 Sep 08 2022 08:45:19

%S 3,5,15,25,55,125,205,385,465,635,645,715,1095,1145,1175,1245,1275,

%T 1315,1375,1565,1615,1675,1685,1965,2055,2085,2095,2405,2455,2535,

%U 2665,2835,2925,3135,3305,3535,3755,3775,4025,4155,4175,4365,4605,4615,4735,4785

%N Numbers k such that k^4 + 4 is semiprime.

%C Except for the first, all the terms above generate brilliant numbers.

%C Numbers n such that n - 1 + i and n + 1 + i are (twin) Gaussian primes, see Shanks. - _Charles R Greathouse IV_, Apr 20 2011

%H Amiram Eldar, <a href="/A108814/b108814.txt">Table of n, a(n) for n = 1..10000</a>

%H Daniel Shanks, <a href="http://dx.doi.org/10.1090/S0025-5718-1960-0111724-0">A Note on Gaussian Twin Primes</a>, Mathematics of Computation 14:70 (1960), pp. 201-203.

%F a(k) = A096012(k) + 1. (Because n^4+4 = ((n-1)^2+1)((n+1)^2+1).) - _Jeppe Stig Nielsen_, Feb 26 2016

%t Select[Range[5000],PrimeOmega[#^4+4]==2&] (* _Harvey P. Dale_, Sep 07 2017 *)

%o (PARI) forstep(n=1,1e5,2,if(isprime(n^2-2*n+2) && isprime(n^2+2*n+2), print1(n", "))) \\ _Charles R Greathouse IV_, Apr 20 2011

%o (Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [1..5000] | IsSemiprime(n^4+4)]; // _Vincenzo Librandi_, Apr 20 2011

%Y Cf. A001358, A057781, A096012.

%K nonn

%O 1,1

%A _Jason Earls_, Jul 10 2005