The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108765 G.f. (1 - x + x^2)/((1-3*x)*(x-1)^2). 4
 1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n). Inverse binomial transform gives match with first differences of A026622. LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-7,3). FORMULA From Rolf Pleisch, Feb 10 2008: (Start) a(0) = 1; a(n) = 3*a(n-1) + n. a(n) = (7*3^n - 2*n - 3)/4. (End) a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012 MATHEMATICA s=1; lst={s}; Do[s+=(s+(n+=s)); AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *) CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -7, 3}, {1, 4, 14}, 40] (* Harvey P. Dale, Dec 11 2012 *) PROG Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code) CROSSREFS Cf. A005032, A026622. Sequence in context: A184138 A318019 A182902 * A304068 A005775 A094688 Adjacent sequences: A108762 A108763 A108764 * A108766 A108767 A108768 KEYWORD easy,nonn AUTHOR Creighton Dement, Jun 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 14:51 EDT 2023. Contains 365551 sequences. (Running on oeis4.)