login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108765
Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).
4
1, 4, 14, 45, 139, 422, 1272, 3823, 11477, 34440, 103330, 310001, 930015, 2790058, 8370188, 25110579, 75331753, 225995276, 677985846, 2033957557, 6101872691, 18305618094, 54916854304, 164750562935, 494251688829, 1482755066512
OFFSET
0,2
COMMENTS
Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).
Inverse binomial transform gives match with first differences of A026622.
Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)
FORMULA
From Rolf Pleisch, Feb 10 2008: (Start)
a(0) = 1; a(n) = 3*a(n-1) + n.
a(n) = (7*3^n - 2*n - 3)/4. (End)
a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - Harvey P. Dale, Dec 11 2012
MATHEMATICA
s=1; lst={s}; Do[s+=(s+(n+=s)); AppendTo[lst, s], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 11 2008 *)
CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -7, 3}, {1, 4, 14}, 40] (* Harvey P. Dale, Dec 11 2012 *)
CROSSREFS
Sequence in context: A318019 A182902 A377670 * A304068 A005775 A094688
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jun 24 2005
STATUS
approved