login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).
4

%I #30 Mar 15 2024 15:20:19

%S 1,4,14,45,139,422,1272,3823,11477,34440,103330,310001,930015,2790058,

%T 8370188,25110579,75331753,225995276,677985846,2033957557,6101872691,

%U 18305618094,54916854304,164750562935,494251688829,1482755066512

%N Expansion of g.f. (1 - x + x^2)/((1-3*x)*(x-1)^2).

%C Superseeker suggests a(n+2) - 2*a(n+1) + a(n) = 7*3^n = A005032(n).

%C Inverse binomial transform gives match with first differences of A026622.

%C Floretion Algebra Multiplication Program, FAMP Code: kbasefor[(- 'j + 'k - 'ii' - 'ij' - 'ik')], vesfor = A000004, Fortype: 1A, Roktype (leftfactor) is set to:Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code)

%H Harvey P. Dale, <a href="/A108765/b108765.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-7,3).

%F From _Rolf Pleisch_, Feb 10 2008: (Start)

%F a(0) = 1; a(n) = 3*a(n-1) + n.

%F a(n) = (7*3^n - 2*n - 3)/4. (End)

%F a(0)=1, a(1)=4, a(2)=14, a(n) = 5*a(n-1) - 7*a(n-2) + 3*a(n-3). - _Harvey P. Dale_, Dec 11 2012

%t s=1;lst={s};Do[s+=(s+(n+=s));AppendTo[lst, s], {n, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 11 2008 *)

%t CoefficientList[Series[(1-x+x^2)/((1-3x)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-7,3},{1,4,14},40] (* _Harvey P. Dale_, Dec 11 2012 *)

%Y Cf. A005032, A026622.

%K easy,nonn

%O 0,2

%A _Creighton Dement_, Jun 24 2005