|
|
A026622
|
|
a(n) = T(n,0) + T(n,1) + ... + T(n,n), T given by A026615.
|
|
4
|
|
|
1, 2, 5, 12, 26, 54, 110, 222, 446, 894, 1790, 3582, 7166, 14334, 28670, 57342, 114686, 229374, 458750, 917502, 1835006, 3670014, 7340030, 14680062, 29360126, 58720254, 117440510, 234881022, 469762046, 939524094, 1879048190, 3758096382, 7516192766
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-2).
|
|
FORMULA
|
a(n) = 7 * 2^(n-2) - 2, a(0) = 1, a(1) = 2 (conjectured). Cf. A026624. - Ralf Stephan, Feb 05 2004
a(n) = 2*a(n-1) + 2, n>2. - Gary Detlefs, Jun 22 2010
a(n) = 3*a(n-1)-2*a(n-2) for n>3. G.f.: (1-x+x^2+x^3) / ((1-x)*(1-2*x)). - Colin Barker, Feb 17 2016
|
|
MATHEMATICA
|
a=5; lst={1, 2, a}; k=7; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
|
|
PROG
|
(PARI) Vec((1-x+x^2+x^3)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 17 2016
|
|
CROSSREFS
|
Sequence in context: A193263 A221949 A262803 * A297618 A198896 A026688
Adjacent sequences: A026619 A026620 A026621 * A026623 A026624 A026625
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Clark Kimberling
|
|
STATUS
|
approved
|
|
|
|