login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026622
a(n) = Sum_{k=0..n} A026615(n, k).
18
1, 2, 5, 12, 26, 54, 110, 222, 446, 894, 1790, 3582, 7166, 14334, 28670, 57342, 114686, 229374, 458750, 917502, 1835006, 3670014, 7340030, 14680062, 29360126, 58720254, 117440510, 234881022, 469762046, 939524094, 1879048190, 3758096382, 7516192766
OFFSET
0,2
COMMENTS
In general, a first order inhomogeneous recurrence of the form s(0) = a, s(n) = m*s(n-1) + k, n>0, will have a closed form of a*m^n +((m^n-1)/(m-1))*k. - Gary Detlefs, Jun 07 2024
FORMULA
a(n) = 7 * 2^(n-2) - 2, a(0) = 1, a(1) = 2 (Cf. A026624). - Ralf Stephan, Feb 05 2004
a(n) = 2*a(n-1) + 2, n>2. - Gary Detlefs, Jun 22 2010
From Colin Barker, Feb 17 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
G.f.: (1 - x + x^2 + x^3)/((1 - x)*(1 - 2*x)). (End)
E.g.f.: (1/4)*( 5 + 2*x - 8*exp(x) + 7*exp(2*x) ). - G. C. Greubel, Jun 24 2024
MATHEMATICA
Table[7*2^(n-2) -2 +Boole[n==1]/2 +(5/4)*Boole[n==0], {n, 0, 40}] (* G. C. Greubel, Jun 24 2024 *)
PROG
(PARI) Vec((1-x+x^2+x^3)/((1-x)*(1-2*x)) + O(x^40)) \\ Colin Barker, Feb 17 2016
(Magma) [n le 1 select n+1 else 7*2^(n-2) -2: n in [0..40]]; // G. C. Greubel, Jun 24 2024
(SageMath) [(7*2^n -8 +2*int(n==1) +5*int(n==0))/4 for n in range(41)] # G. C. Greubel, Jun 24 2024
KEYWORD
nonn,easy
STATUS
approved