login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026615
Triangle read by rows: T(n,0) = T(n,n) = 1 for n >= 0, T(n,1) = T(n,n-1) = 2*n-1 for n >= 1, T(n,k) = T(n-1,k-1) + T(n-1,k) for 2 <= k <= n-2 and n >= 4.
16
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 10, 7, 1, 1, 9, 17, 17, 9, 1, 1, 11, 26, 34, 26, 11, 1, 1, 13, 37, 60, 60, 37, 13, 1, 1, 15, 50, 97, 120, 97, 50, 15, 1, 1, 17, 65, 147, 217, 217, 147, 65, 17, 1, 1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1
OFFSET
0,5
COMMENTS
T(n, k) is the number of paths from (0, 0) to (n-k, k) in the directed graph having vertices (i, j) and edges (i, j)-to-(i+1, j) and (i, j)-to-(i, j+1) for i, j >= 0 and edges (i, j)-to-(i+1, j+1) for i=0, j >= 0 and for j=0, i >= 0.
FORMULA
Sum_{k=0..n} T(n, k) = A026622(n) (row sums).
From G. C. Greubel, Jun 13 2024: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000012(n).
T(n, 1) = A005408(n-1), n >= 1.
T(n, 2) = A098749(n), n >= 2.
T(n, 3) = A145066(n-2) - [n=3], n >= 3.
Sum_{k=0..n} (-1)^k*T(n, k) = A176742(n) + [n=2].
Sum_{k=0..n} (-1)^k*T(n-k, k) = b(n-2) + 2*[n=0] + [n=1], where b(n) = (1/6)*(-2*sqrt(3)*sin(Pi*n/3) + 2*sqrt(3)*sin(5*Pi*n/3) + 3*cos(Pi* n/2) + 3*cos(3*Pi*n/2) - 6).
Sum_{k=0..n} k*T(n, k) = n*(7*2^(n-3) - 1) + (1/4)*[n=1]. (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 5, 5, 1;
1, 7, 10, 7, 1;
1, 9, 17, 17, 9, 1;
1, 11, 26, 34, 26, 11, 1;
1, 13, 37, 60, 60, 37, 13, 1;
1, 15, 50, 97, 120, 97, 50, 15, 1;
1, 17, 65, 147, 217, 217, 147, 65, 17, 1;
1, 19, 82, 212, 364, 434, 364, 212, 82, 19, 1;
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, 2*n-1, T[n-1, k -1] + T[n-1, k]]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 13 2024 *)
PROG
(Magma)
function T(n, k) // T = A026615
if k eq 0 or k eq n then return 1;
elif k eq 1 or k eq n-1 then return 2*n-1;
else return T(n-1, k-1) + T(n-1, k);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 13 2024
(SageMath)
def T(n, k): # T = A026615
if k==0 or k==n: return 1
elif k==1 or k==n-1: return 2*n-1
else: return T(n-1, k-1) + T(n-1, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jun 13 2024
CROSSREFS
KEYWORD
nonn,tabl
EXTENSIONS
Offset corrected by G. C. Greubel, Jun 13 2024
STATUS
approved