login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108644
Square array A(n,k) read by ascending antidiagonals: A(n,n) = n^2, if n>k: A(n,k) = n*(n-1) + k, if k>n: A(n,k) = n + (k-1)^2.
2
1, 3, 2, 7, 4, 5, 13, 8, 6, 10, 21, 14, 9, 11, 17, 31, 22, 15, 12, 18, 26, 43, 32, 23, 16, 19, 27, 37, 57, 44, 33, 24, 20, 28, 38, 50, 73, 58, 45, 34, 25, 29, 39, 51, 65, 91, 74, 59, 46, 35, 30, 40, 52, 66, 82, 111, 92, 75, 60, 47, 36, 41, 53, 67, 83, 101
OFFSET
1,2
COMMENTS
The table gives all positive integers exactly once.
FORMULA
From G. C. Greubel, Oct 18 2023: (Start)
T(n, k) = A(n-k+1, k) (antidiagonal triangle).
T(n, n) = A002522(n-1).
T(2*n, n) = A005563(n).
T(2*n-1, n) = A000290(n).
T(2*n-2, n) = A002378(n-1), n >= 2.
T(3*n, n) = A033954(n).
Sum_{k=1..n} T(n, k) = A274248(n). (End)
Let M be the upper left n X n submatrix of this array, then abs(det(M)) = A098557(n). - Thomas Scheuerle, Nov 11 2023
EXAMPLE
Array begins:
1 2 5 10 17 26 37 ...
3 4 6 11 18 27 38 ...
7 8 9 12 19 28 39 ...
13 14 15 16 20 29 40 ...
21 22 23 24 25 30 41 ...
31 32 33 34 35 36 42 ...
43 44 45 46 47 48 49 ...
...
Antidiagonal triangle begins as:
1;
3, 2;
7, 4, 5;
13, 8, 6, 10;
21, 14, 9, 11, 17;
31, 22, 15, 12, 18, 26;
43, 32, 23, 16, 19, 27, 37;
...
MATHEMATICA
A[n_, k_]:= If[k<n, k +n*(n-1), If[k==n, n^2, n +(k-1)^2]];
A108644[n_, k_]:= A[n-k+1, k];
Table[A108644[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 18 2023 *)
PROG
(PARI) A(i, j)=if (i==j, i^2, if (i>j, i*(i-1)+j, (j-1)^2+i));
matrix(7, 7, n, k, A(n, k)) \\ Michel Marcus, Dec 30 2020
(Magma)
A:= func< n, k | k lt n select k+n*(n-1) else k eq n select n^2 else n+(k-1)^2 >;
A108644:= func< n, k | A(n-k+1, k) >;
[A108644(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 18 2023
(SageMath)
def A(n, k):
if k<n: return k+n*(n-1)
elif k==n: return n^2
else: return n+(k-1)^2
def A108644(n, k): return A(n-k+1, k)
flatten([[A108644(n, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Oct 18 2023
CROSSREFS
Cf. A002522 (1st row), A002061 (1st column), A000290 (diagonal).
Sequence in context: A194071 A194104 A277679 * A194011 A375890 A370698
KEYWORD
nonn,tabl
AUTHOR
Pierre CAMI, Jun 27 2005
STATUS
approved