login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108556 Triangle, read by rows, where row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice. 5
1, 1, 2, 1, 4, 4, 1, 12, 30, 20, 1, 24, 120, 192, 96, 1, 40, 330, 940, 1080, 432, 1, 60, 732, 3200, 6240, 5568, 1856, 1, 84, 1414, 8708, 25200, 37184, 27104, 7744, 1, 112, 2480, 20352, 80960, 173824, 206080, 126976, 31744, 1, 144, 4050, 42588, 221544, 643824, 1096032, 1085760, 579456, 128768 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row n equals the inverse binomial transform of row n of the square array A108553.

Array of f-vectors for type D root polytopes [Ardila et al.]. See A063007 and A127674 for the arrays of f-vectors for type A and type C root polytopes respectively. - Peter Bala, Oct 23 2008

LINKS

Table of n, a(n) for n=0..54.

F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.

FORMULA

Main diagonal equals A008353: 2^(n-1)*(2^n-n) for n>1.

O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + 2*x)*z + (3 + 8*x + 8*x^2)*z^2 - (1 + 2*x)*(1 - 6*x - 6*x^2)z^3 - 8*x*(1 + x)(1 + 2*x + 2*x^2)*z^4 + 2*x*(1 + x)*(1 + 2*x)*z^5 and D(x,z) = ((1-z)^2 - 4*x*z)*(1 - z*(1 + 2*x))^2. - Peter Bala, Oct 23 2008

EXAMPLE

Triangle begins:

1;

1,2;

1,4,4;

1,12,30,20;

1,24,120,192,96;

1,40,330,940,1080,432;

1,60,732,3200,6240,5568,1856;

1,84,1414,8708,25200,37184,27104,7744;

1,112,2480,20352,80960,173824,206080,126976,31744; ...

MATHEMATICA

T[n_, k_] := Module[{A}, A = Table[Table[If[r - 1 == 0 || c - 1 == 0, 1, If[r - 1 == 1, 2c - 1, Sum[Binomial[r + c - j - 2, c - j - 1] (Binomial[2r - 2, 2j] - 2(r - 1) Binomial[r - 3, j - 1]), {j, 0, c - 1}]]], {c, 1, n + 1}], {r, 1, n + 1}]; SeriesCoefficient[((A[[n + 1]]. x^Range[0, n]) /. x -> x/(1 + x))/(1 + x), {x, 0, k}]];

Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 26 2018, from PARI *)

PROG

(PARI) T(n, k)=local(A=vector(n+1, r, vector(n+1, c, if(r-1==0 || c-1==0, 1, if(r-1==1, 2*c-1, sum(j=0, c-1, binomial(r+c-j-2, c-j-1)*(binomial(2*r-2, 2*j)-2*(r-1)*binomial(r-3, j-1)))))))); polcoeff(subst(Ser(A[n+1]), x, x/(1+x))/(1+x), k)

CROSSREFS

Cf. A108553, A108557 (row sums), A108558, Rows are inverse binomial transforms of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).

Cf. A063007, A127674.

Sequence in context: A117427 A097761 A200756 * A122440 A046943 A107728

Adjacent sequences:  A108553 A108554 A108555 * A108557 A108558 A108559

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Jun 10 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 13:56 EST 2019. Contains 329149 sequences. (Running on oeis4.)