Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jul 26 2018 06:35:33
%S 1,1,2,1,4,4,1,12,30,20,1,24,120,192,96,1,40,330,940,1080,432,1,60,
%T 732,3200,6240,5568,1856,1,84,1414,8708,25200,37184,27104,7744,1,112,
%U 2480,20352,80960,173824,206080,126976,31744,1,144,4050,42588,221544,643824,1096032,1085760,579456,128768
%N Triangle, read by rows, where row n equals the inverse binomial transform of the crystal ball sequence for D_n lattice.
%C Row n equals the inverse binomial transform of row n of the square array A108553.
%C Array of f-vectors for type D root polytopes [Ardila et al.]. See A063007 and A127674 for the arrays of f-vectors for type A and type C root polytopes respectively. - _Peter Bala_, Oct 23 2008
%H F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, <a href="http://arxiv.org/abs/0809.5123">Root polytopes and growth series of root lattices</a>, arXiv:0809.5123 [math.CO], 2008.
%F Main diagonal equals A008353: 2^(n-1)*(2^n-n) for n>1.
%F O.g.f. : rational function N(x,z)/D(x,z), where N(x,z) = 1 - 3*(1 + 2*x)*z + (3 + 8*x + 8*x^2)*z^2 - (1 + 2*x)*(1 - 6*x - 6*x^2)z^3 - 8*x*(1 + x)(1 + 2*x + 2*x^2)*z^4 + 2*x*(1 + x)*(1 + 2*x)*z^5 and D(x,z) = ((1-z)^2 - 4*x*z)*(1 - z*(1 + 2*x))^2. - _Peter Bala_, Oct 23 2008
%e Triangle begins:
%e 1;
%e 1,2;
%e 1,4,4;
%e 1,12,30,20;
%e 1,24,120,192,96;
%e 1,40,330,940,1080,432;
%e 1,60,732,3200,6240,5568,1856;
%e 1,84,1414,8708,25200,37184,27104,7744;
%e 1,112,2480,20352,80960,173824,206080,126976,31744; ...
%t T[n_, k_] := Module[{A}, A = Table[Table[If[r - 1 == 0 || c - 1 == 0, 1, If[r - 1 == 1, 2c - 1, Sum[Binomial[r + c - j - 2, c - j - 1] (Binomial[2r - 2, 2j] - 2(r - 1) Binomial[r - 3, j - 1]), {j, 0, c - 1}]]], {c, 1, n + 1}], {r, 1, n + 1}]; SeriesCoefficient[((A[[n + 1]]. x^Range[0, n]) /. x -> x/(1 + x))/(1 + x), {x, 0, k}]];
%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 26 2018, from PARI *)
%o (PARI) T(n,k)=local(A=vector(n+1,r,vector(n+1,c,if(r-1==0 || c-1==0,1,if(r-1==1,2*c-1, sum(j=0,c-1,binomial(r+c-j-2,c-j-1)*(binomial(2*r-2,2*j)-2*(r-1)*binomial(r-3,j-1)))))))); polcoeff(subst(Ser(A[n+1]),x,x/(1+x))/(1+x),k)
%Y Cf. A108553, A108557 (row sums), A108558, Rows are inverse binomial transforms of: A001844 (row 2), A005902 (row 3), A007204 (row 4), A008356 (row 5), A008358 (row 6), A008360 (row 7), A008362 (row 8), A008377 (row 9), A008379 (row 10).
%Y Cf. A063007, A127674.
%K nonn,tabl
%O 0,3
%A _Paul D. Hanna_, Jun 10 2005