login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008377
Crystal ball sequence for D_9 lattice.
4
1, 145, 4339, 55171, 416773, 2218645, 9195511, 31608967, 94016137, 249258777, 601883259, 1345167627, 2817026445, 5581287453, 10542186111, 19101404943, 33368594193, 56438048673, 92746082819, 148525641875, 232376811797, 355974143909, 534934092551, 789868374935
OFFSET
0,2
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n-1) = 1006/2835*n^9-503/315*n^8+6404/945*n^7-244/15*n^6+3946/135*n^5-542/15*n^4+87068/2835*n^3-5356/315*n^2+1867/315*n-1.
G.f.: (x+1) * (x^8 +134*x^7 +2800*x^6 +15386*x^5 +27742*x^4 +15386*x^3 +2800*x^2 +134*x +1) / (x-1)^10. [Colin Barker, May 28 2012]
MAPLE
1006/2835*n^9-503/315*n^8+6404/945*n^7-244/15*n^6+3946/135*n^5-542/15*n^4+87068/2835*n^3-5356/315*n^2+1867/315*n-1;
MATHEMATICA
CoefficientList[Series[(x + 1) (x^8 + 134 x^7 + 2800 x^6 + 15386 x^5 + 27742 x^4 + 15386 x^3 + 2800 x^2 + 134 x + 1)/(x - 1)^10, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 15 2013 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {1, 145, 4339, 55171, 416773, 2218645, 9195511, 31608967, 94016137, 249258777}, 30] (* Harvey P. Dale, May 11 2024 *)
CROSSREFS
Sequence in context: A234116 A232151 A264284 * A076464 A018232 A192842
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 15 2013
STATUS
approved