OFFSET
1,2
COMMENTS
Triangle T(n,k) =
1. Riordan Array (1, (1 - sqrt(1 - 4*x - 4*x^2))/2) without first column.
2. Riordan Array ((1 - sqrt(1 - 4*x - 4*x^2))/(2*x), (1 - sqrt(1 - 4*x - 4*x^2))/2) numbering triangle (0,0).
The array factorizes in the Bell subgroup of the Riordan group as (1 + x, x*(1 + x)) * (c(x), x*c(x)) = A030528 * A033184, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Dec 11 2015
FORMULA
T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );
EXAMPLE
1,
2, 1,
4, 4, 1,
12, 12, 6, 1,
40, 40, 24, 8, 1,
144, 144, 92, 40, 10, 1,
544, 544, 360, 176, 60, 12, 1
MATHEMATICA
Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
PROG
(Maxima) T(n, k):=k*(sum((binomial(i, n-i)*binomial(-k+2*i-1, i-1))/i, i, k, n));
(PARI)
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i, n-i)*binomial(-k+2*i-1, i-1)/i), ", ", ); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 04 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Nov 22 2011
STATUS
approved