login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200756
Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.
0
1, 2, 1, 4, 4, 1, 12, 12, 6, 1, 40, 40, 24, 8, 1, 144, 144, 92, 40, 10, 1, 544, 544, 360, 176, 60, 12, 1, 2128, 2128, 1440, 752, 300, 84, 14, 1, 8544, 8544, 5872, 3200, 1400, 472, 112, 16, 1, 35008, 35008, 24336, 13664, 6352, 2400, 700, 144, 18, 1
OFFSET
1,2
COMMENTS
Triangle T(n,k) =
1. Riordan Array (1, (1 - sqrt(1 - 4*x - 4*x^2))/2) without first column.
2. Riordan Array ((1 - sqrt(1 - 4*x - 4*x^2))/(2*x), (1 - sqrt(1 - 4*x - 4*x^2))/2) numbering triangle (0,0).
The array factorizes in the Bell subgroup of the Riordan group as (1 + x, x*(1 + x)) * (c(x), x*c(x)) = A030528 * A033184, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - Peter Bala, Dec 11 2015
FORMULA
T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );
EXAMPLE
1,
2, 1,
4, 4, 1,
12, 12, 6, 1,
40, 40, 24, 8, 1,
144, 144, 92, 40, 10, 1,
544, 544, 360, 176, 60, 12, 1
MATHEMATICA
Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2015 *)
PROG
(Maxima) T(n, k):=k*(sum((binomial(i, n-i)*binomial(-k+2*i-1, i-1))/i, i, k, n));
(PARI)
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i, n-i)*binomial(-k+2*i-1, i-1)/i), ", ", ); ); print(); ); };
tabl(10); \\ Indranil Ghosh, Mar 04 2017
CROSSREFS
Cf. A025227 (column 1), A000108, A030528, A033184.
Sequence in context: A200965 A117427 A097761 * A108556 A122440 A046943
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Nov 22 2011
STATUS
approved