login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.
0

%I #23 Mar 05 2017 01:39:42

%S 1,2,1,4,4,1,12,12,6,1,40,40,24,8,1,144,144,92,40,10,1,544,544,360,

%T 176,60,12,1,2128,2128,1440,752,300,84,14,1,8544,8544,5872,3200,1400,

%U 472,112,16,1,35008,35008,24336,13664,6352,2400,700,144,18,1

%N Triangle T(n,k) = coefficient of x^n in expansion of ((1 -sqrt(1 - 4*x - 4*x^2))/2)^k.

%C Triangle T(n,k) =

%C 1. Riordan Array (1, (1 - sqrt(1 - 4*x - 4*x^2))/2) without first column.

%C 2. Riordan Array ((1 - sqrt(1 - 4*x - 4*x^2))/(2*x), (1 - sqrt(1 - 4*x - 4*x^2))/2) numbering triangle (0,0).

%C The array factorizes in the Bell subgroup of the Riordan group as (1 + x, x*(1 + x)) * (c(x), x*c(x)) = A030528 * A033184, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108. - _Peter Bala_, Dec 11 2015

%F T(n,k) = k*( Sum_{i = k..n} binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i );

%e 1,

%e 2, 1,

%e 4, 4, 1,

%e 12, 12, 6, 1,

%e 40, 40, 24, 8, 1,

%e 144, 144, 92, 40, 10, 1,

%e 544, 544, 360, 176, 60, 12, 1

%t Table[k Sum[Binomial[i, n - i] Binomial[-k + 2 i - 1, i - 1]/i, {i, k, n}], {n, 10}, {k, n}] // Flatten (* _Michael De Vlieger_, Dec 11 2015 *)

%o (Maxima) T(n,k):=k*(sum((binomial(i,n-i)*binomial(-k+2*i-1,i-1))/i,i,k,n));

%o (PARI)

%o tabl(nn) = {for (n=1, nn, for(k=1, n, print1(k*sum(i=k, n, binomial(i,n-i)*binomial(-k+2*i-1,i-1)/i),", ",);); print();); };

%o tabl(10); \\ _Indranil Ghosh_, Mar 04 2017

%Y Cf. A025227 (column 1), A000108, A030528, A033184.

%K nonn,tabl

%O 1,2

%A _Vladimir Kruchinin_, Nov 22 2011