login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200754
G.f. satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^5.
4
1, 1, 3, 13, 67, 380, 2288, 14351, 92737, 613063, 4126289, 28179766, 194780822, 1360053081, 9578997279, 67971291791, 485464864401, 3487203531460, 25176899072984, 182598098616625, 1329716528758651, 9718954060263384, 71273846758123552, 524279847227139350
OFFSET
0,3
COMMENTS
Compare to the g.f. G(x) for the ternary tree numbers (A001764): G(x) = 1 + x*G(x)^4 - x^2*G(x)^6 = 1 + x*G(x)^3.
LINKS
FORMULA
Recurrence: 3*n*(n+1)*(3*n - 1)*(3*n + 1)*(1280*n^7 - 17280*n^6 + 94466*n^5 - 266799*n^4 + 407516*n^3 - 311946*n^2 + 81648*n + 12420)*a(n) = n*(281600*n^10 - 3942400*n^9 + 22465080*n^8 - 65757900*n^7 + 98435187*n^6 - 46293273*n^5 - 73831865*n^4 + 131625925*n^3 - 85490202*n^2 + 25470288*n - 2915460)*a(n-1) + (263680*n^11 - 4087040*n^10 + 26682396*n^9 - 96110406*n^8 + 210443037*n^7 - 293037231*n^6 + 270493529*n^5 - 181862299*n^4 + 103208358*n^3 - 47593224*n^2 + 12881700*n - 1360800)*a(n-2) - 5*(640000*n^11 - 10880000*n^10 + 78609000*n^9 - 311686500*n^8 + 721945299*n^7 - 918913929*n^6 + 367548335*n^5 + 642045653*n^4 - 1081692258*n^3 + 697174344*n^2 - 208955268*n + 24222240)*a(n-3) + 5*(5*n - 18)*(5*n - 16)*(5*n - 14)*(5*n - 12)*(1280*n^7 - 8320*n^6 + 17666*n^5 - 8869*n^4 - 15820*n^3 + 22148*n^2 - 9282*n + 1305)*a(n-4). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ s*sqrt((2*r*s-1) / (2*Pi*(5*r*s-3))) / (2*n^(3/2)*r^n), where r = 0.1272568969777848138753091632571986265610307654216... and s = 1.358291097397172238669759690645074441686961930838... are roots of the system of equations s + r^2*s^5 = 1 + r*s^4, 1 + 5*r^2*s^4 = 4*r*s^3. - Vaclav Kotesovec, Nov 18 2017
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+3*k+1,k) * binomial(k,n-k)/(n+3*k+1). - Seiichi Manyama, Nov 01 2023
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 67*x^4 + 380*x^5 + 2288*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 515*x^4 + 3068*x^5 + 19092*x^6 +...
A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 780*x^4 + 4741*x^5 + 29915*x^6 +...
where a(2) = 4 - 1; a(3) = 18 - 5; a(4) = 92 - 25; a(5) = 515 - 135; ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A^4-x^2*A^5+x*O(x^n)); polcoeff(A, n)}
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1)); \\ Seiichi Manyama, Nov 01 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 21 2011
STATUS
approved