Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Nov 01 2023 17:16:35
%S 1,1,3,13,67,380,2288,14351,92737,613063,4126289,28179766,194780822,
%T 1360053081,9578997279,67971291791,485464864401,3487203531460,
%U 25176899072984,182598098616625,1329716528758651,9718954060263384,71273846758123552,524279847227139350
%N G.f. satisfies A(x) = 1 + x*A(x)^4 - x^2*A(x)^5.
%C Compare to the g.f. G(x) for the ternary tree numbers (A001764): G(x) = 1 + x*G(x)^4 - x^2*G(x)^6 = 1 + x*G(x)^3.
%H Vaclav Kotesovec, <a href="/A200754/b200754.txt">Table of n, a(n) for n = 0..400</a>
%F Recurrence: 3*n*(n+1)*(3*n - 1)*(3*n + 1)*(1280*n^7 - 17280*n^6 + 94466*n^5 - 266799*n^4 + 407516*n^3 - 311946*n^2 + 81648*n + 12420)*a(n) = n*(281600*n^10 - 3942400*n^9 + 22465080*n^8 - 65757900*n^7 + 98435187*n^6 - 46293273*n^5 - 73831865*n^4 + 131625925*n^3 - 85490202*n^2 + 25470288*n - 2915460)*a(n-1) + (263680*n^11 - 4087040*n^10 + 26682396*n^9 - 96110406*n^8 + 210443037*n^7 - 293037231*n^6 + 270493529*n^5 - 181862299*n^4 + 103208358*n^3 - 47593224*n^2 + 12881700*n - 1360800)*a(n-2) - 5*(640000*n^11 - 10880000*n^10 + 78609000*n^9 - 311686500*n^8 + 721945299*n^7 - 918913929*n^6 + 367548335*n^5 + 642045653*n^4 - 1081692258*n^3 + 697174344*n^2 - 208955268*n + 24222240)*a(n-3) + 5*(5*n - 18)*(5*n - 16)*(5*n - 14)*(5*n - 12)*(1280*n^7 - 8320*n^6 + 17666*n^5 - 8869*n^4 - 15820*n^3 + 22148*n^2 - 9282*n + 1305)*a(n-4). - _Vaclav Kotesovec_, Nov 18 2017
%F a(n) ~ s*sqrt((2*r*s-1) / (2*Pi*(5*r*s-3))) / (2*n^(3/2)*r^n), where r = 0.1272568969777848138753091632571986265610307654216... and s = 1.358291097397172238669759690645074441686961930838... are roots of the system of equations s + r^2*s^5 = 1 + r*s^4, 1 + 5*r^2*s^4 = 4*r*s^3. - _Vaclav Kotesovec_, Nov 18 2017
%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n+3*k+1,k) * binomial(k,n-k)/(n+3*k+1). - _Seiichi Manyama_, Nov 01 2023
%e G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 67*x^4 + 380*x^5 + 2288*x^6 +...
%e Related expansions:
%e A(x)^4 = 1 + 4*x + 18*x^2 + 92*x^3 + 515*x^4 + 3068*x^5 + 19092*x^6 +...
%e A(x)^5 = 1 + 5*x + 25*x^2 + 135*x^3 + 780*x^4 + 4741*x^5 + 29915*x^6 +...
%e where a(2) = 4 - 1; a(3) = 18 - 5; a(4) = 92 - 25; a(5) = 515 - 135; ...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^4-x^2*A^5+x*O(x^n));polcoeff(A,n)}
%o (PARI) a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1)); \\ _Seiichi Manyama_, Nov 01 2023
%Y Cf. A200753, A200755, A365180.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 21 2011