This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108310 Successive maxima of log(n#)/n where n# is the product of the primes less than n. 3
 2, 3, 5, 7, 13, 19, 43, 47, 73, 103, 107, 109, 113, 199, 283, 467, 661, 887, 1063, 1069, 1097, 1103, 1109, 1123, 1129, 1303, 1307, 1321, 1327, 1621, 1627, 2803, 3931, 3947, 4273, 4289, 4297, 5867, 5869, 5881, 6373, 6379, 9439, 9473, 9479, 9497, 9551, 9859 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Every entry must be a prime. Note that log(n#)=theta(n) (the Chebyshev function) for which bounds are known (e.g. Rosser and Schoenfeld have an estimate |theta(n)-n| < n/(40 log n).) In particular, log(n#)/n tends to 1, which allows a proof of the Prime Number Theorem. I suspect log(n#) can be greater than n for some n, which would make the sequence finite, but I do not know an example of such an n. (When n=30337841, 0.9999 < log(n#)/n < 1.) When n=3745619057, 0.99999312926590387432389345880435140945170798255514 < log(n#)/n < 1. - Robert G. Wilson v, Jul 01 2005 Computational experiments show that it may be true that n > log(n#) for all n. In fact, it appears that, for any k, n > log(n#) + k*log(n) except for a finite number of small primes. For k=1, only 5, 7 and 19 are the exceptional n. This inequality is still consistent with 1 being the limiting value of log(n#)/n. - T. D. Noe, Apr 17 2006 Apparently in the long run (n-theta(n))/(Li(n)-Pi(n)) goes to log(n), so if Li(n) x infinitely often [but theta(x) - x = o(x), see Rosser & Schoenfeld]. See Hardy & Littlewood section 5. - Charles R Greathouse IV, Aug 02 2012 LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 G. H. Hardy and J. E. Littlewood, Contributions to the theory of the Riemann Zeta-Function and the theory of the distribution of primes, Acta Mathematica 41 (1916), pp. 119-196. J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions theta(x) and psi(x), Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. Math. Comp. 29 (1975), 243-269. EXAMPLE 13 follows 7 because log(7#)/7 = log(210)/7 = 0.7638, while log(8#)/8 and so on are smaller but log(13#)/13= 0.7931 is larger. A larger entry is 3445943 since log(n#)<0.99978 n for smaller n but log(3445943#)=3445185.8713457=(0.999780284)(3445943). MAPLE A:=[]:b:=0:S:=0:n:=1: while true do n:=nextprime(n): S:=S+evalf(log(n)): if S>b*n then A:=[op(A), n]: b:= S/n: fi: od: #Program must be terminated manually! Array "A" is the sequence. MATHEMATICA lmt = slp = 0; lst = {}; Do[p = Prime[n]; slp = slp + N[Log[p], 12]; If[slp/p > lmt, lmt = slp/p; AppendTo[lst, p]], {n, 1224}]; lst (* Robert G. Wilson v, Jul 01 2005 *) PROG (PARI) r=th=0; forprime(p=2, 1e6, th+=log(p); t=th/p; if(t>r, r=t; print1(p", "))) \\ Charles R Greathouse IV, Dec 17 2014 CROSSREFS Cf. A034386, A215013. Sequence in context: A008965 A113864 A188754 * A252398 A146999 A147485 Adjacent sequences:  A108307 A108308 A108309 * A108311 A108312 A108313 KEYWORD nonn,fini AUTHOR David J. Rusin, Jun 29 2005 EXTENSIONS More terms from Robert G. Wilson v, Jul 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 20 13:03 EST 2019. Contains 329336 sequences. (Running on oeis4.)