login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330383
a(n) = (a(n-1)*a(n-7) + a(n-2)*a(n-6) - a(n-3)*a(n-5) + a(n-4)^2) / a(n-8), a(0) = ... = a(7) = 1.
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 13, 19, 49, 139, 349, 814, 1999, 6239, 17319, 88463, 352207, 1433335, 4638463, 24497167, 115269646, 734764861, 5312141131, 33794633761, 194109246131, 1155202458861, 11655116287031, 94020049884421, 1124623970095267
OFFSET
0,9
COMMENTS
The sequence is similar to Somos-8 but all of the terms are integers.
LINKS
FORMULA
a(n) = a(7-n) for all n in Z.
a(n)*a(n+8) = a(n+1)*a(n+7) + a(n+2)*a(n+6) - a(n+3)*a(n+5) + a(n+4)^2 for all n in Z.
a(n)*a(n+9) = -a(n+1)*a(n+8) + 3*a(n+2)*a(n+7) + a(n+3)*a(n+6) + a(n+4)*a(n+5) for all n in Z.
0 = + a(n+6)*a(n+3)*a(n) - a(n+6)*a(n+2)*a(n+1) - a(n+5)*a(n+4)*a(n) - a(n+5)*a(n+3)*a(n+1) + 2*a(n+5)*a(n+2)^2 + 2*a(n+4)^2*a(n+1) - 3*a(n+4)*a(n+3)*a(n+2) + a(n+3)^3 for all n in Z.
PROG
(PARI) {a(n) = my(v); if( n<0, n=7-n); if( n<8, 1, n++; v=vector(n, k, 1); for( k=9, n, v[k] = (v[k-1]*v[k-7] + v[k-2]*v[k-6] - v[k-3]*v[k-5] + v[k-4]^2) / v[k-8]); v[n])};
CROSSREFS
Sequence in context: A188754 A108310 A252398 * A146999 A147485 A341650
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 03 2020
STATUS
approved