The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A330381 Triangle read by rows: T(n,k) is the number of ternary strings of length n with k indispensable digits, with 0 <= k <= n. 3
 1, 1, 2, 1, 5, 3, 1, 9, 13, 4, 1, 14, 35, 26, 5, 1, 20, 75, 96, 45, 6, 1, 27, 140, 267, 216, 71, 7, 1, 35, 238, 623, 750, 427, 105, 8, 1, 44, 378, 1288, 2123, 1800, 770, 148, 9, 1, 54, 570, 2436, 5211, 6046, 3858, 1296, 201, 10, 1, 65, 825, 4302, 11505, 17303 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A digit in a string is called indispensable, if it is greater than the following digit or equal to the following digits which are eventually greater than the following digit.  We also assume that there is an invisible digit 0 at the end of any string.  For example, in 7233355548, the digits 7, 5, 5, 5, and 8 are indispensable. T(n, k) is also the number of integers m where the length of the ternary representation of m is less than or equal to n and the digit sum of the ternary representation of 2m is 2k. LINKS J. Y. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math 25 (2019), pp. 40-48. J. Y. Choi, Digit sums generalizing binomial coefficients, J. Integer Seq. 22 (2019), Article 19.8.3. FORMULA T(n, k) = A027907(n, 2k-1) + A027907(n, 2k). EXAMPLE Triangle begins   1;   1,  2;   1,  5,  3;   1,  9, 13,  4;   1, 14, 35, 26,  5;   1, 20, 75, 96, 45, 6;   ... There is 1 string (00) of length 2 with 0 indispensable digits. There are 5 strings (01, 02, 10, 20, 12) of length 2 with 1 indispensable digit. There are 3 strings (11, 21, 22) of length 2 with 2 indispensable digits. Hence T(2, 0) = 1, T(2, 1) = 5, T(2, 2) = 3. MATHEMATICA Table[Total@ Map[Sum[Binomial[n, i] Binomial[n - i, # - 2 i], {i, 0, n}] &, 2 k + {-1, 0}], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Adi Dani at A027907 *) PROG (PARI) A027907(n, k) = if(n<0, 0, polcoeff((1 + x + x^2)^n, k)); T(n, k) = A027907(n, 2*k-1) + A027907(n, 2*k); \\ Jinyuan Wang, Dec 14 2019 CROSSREFS Cf. A027907, A330509. Sequence in context: A240192 A264751 A209130 * A210792 A105728 A120095 Adjacent sequences:  A330378 A330379 A330380 * A330382 A330383 A330384 KEYWORD nonn,base,tabl AUTHOR Ji Young Choi, Dec 12 2019 EXTENSIONS More terms from Jinyuan Wang, Dec 14 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 22:22 EDT 2021. Contains 348119 sequences. (Running on oeis4.)