login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A330509
Triangle read by rows: T(n,k) is the number of 4-ary strings of length n with k indispensable digits, with 0 <= k <= n.
2
1, 1, 3, 1, 9, 6, 1, 19, 34, 10, 1, 34, 115, 91, 15, 1, 55, 301, 445, 201, 21, 1, 83, 672, 1582, 1338, 392, 28, 1, 119, 1344, 4600, 6174, 3410, 700, 36, 1, 164, 2478, 11623, 22548, 19784, 7723, 1170, 45, 1, 219, 4290, 26452, 69834, 88428, 55009, 15999, 1857, 55
OFFSET
0,3
COMMENTS
A digit in a string is called indispensable if it is greater than the following digit or equal to the following digits which are eventually greater than the following digit. We also assume that there is an invisible digit 0 at the end of any string. For example, in 7233355548, the digits 7, 5, 5, 5, and 8 are indispensable.
T(n, k) is also the number of integers m where the length of the base-4 representation of m is n and the digit sum of the base-4 representation of 3m is 3k.
LINKS
J. Y. Choi, Indispensable digits for digit sums, Notes Number Theory Discrete Math 25 (2019), pp. 40-48.
J. Y. Choi, Digit sums generalizing binomial coefficients, J. Integer Seq. 22 (2019), Article 19.8.3.
FORMULA
T(n, k) = A008287(n, 3k-2) + A008287(n, 3k-1) + A008287(n, 3k).
EXAMPLE
Triangle begins
1;
1, 3;
1, 9, 6;
1, 19, 34, 10;
1, 34, 115, 91, 15;
1, 55, 301, 445, 201, 21;
...
There is 1 string (00) of length 2 with 0 indispensable digits.
There are 9 strings (01, 02, 03, 10, 12, 13, 20, 23, 30) of length 2 with 1 indispensable digit.
There are 6 strings (11, 21, 22, 31, 32, 33) of length 2 with 2 indispensable digits.
Hence T(2,0)=1, T(2,1)=9, T(2,2)=6.
MATHEMATICA
Table[Total@ Map[Sum[Binomial[n, i] Binomial[n, # - 2 i], {i, 0, #/2}] &, 3 k + {-2, -1, 0}], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 23 2019, after Jean-François Alcover at A008287 *)
PROG
(PARI) A008287(n, k) = if(n<0, 0, polcoeff((1 + x + x^2 + x^3)^n, k));
T(n, k) = A008287(n, 3*k-2)+A008287(n, 3*k-1) + A008287(n, 3*k);
CROSSREFS
Sequence in context: A105539 A132819 A264364 * A105545 A178831 A027465
KEYWORD
nonn,tabl,base
AUTHOR
Ji Young Choi, Dec 16 2019
STATUS
approved