login
A178831
Rectangular array T(n,k) = binomial(n+1,2)*(n^k - (n-1)^k) read by antidiagonals.
1
1, 1, 3, 1, 9, 6, 1, 21, 30, 10, 1, 45, 114, 70, 15, 1, 93, 390, 370, 135, 21, 1, 189, 1266, 1750, 915, 231, 28, 1, 381, 3990, 7810, 5535, 1911, 364, 36, 1, 765, 12354, 33670, 31515, 14091, 3556, 540, 45, 1, 1533, 37830, 141970, 172935, 97671, 30940, 6084, 765, 55
OFFSET
1,3
COMMENTS
T(n,k) is the sum of the elements in the image sets of all functions f:{1,2,...,k}->{1,2,...,n}.
Equivalently, the sum of the distinct entries in each length k sequence on {1,2,...,n}.
FORMULA
E.g.f. for row n: binomial(n+1,2)*exp((n-1)*x)*(exp(x) - 1).
EXAMPLE
Array begins
1, 1, 1, 1, 1, 1, ...
3, 9, 21, 45, 93, 189, ...
6, 30, 114, 390, 1266, 3990, ...
10, 70, 370, 1750, 7810, 33670, ...
15, 135, 915, 5535, 31515, 172935, ...
21, 231, 1911, 14091, 97671, 651651, ...
MATHEMATICA
Table[Range[7]! Rest[CoefficientList[Series[Binomial[n+1, 2] Exp[(n-1)x](Exp[x]-1), {x, 0, 7}], x]], {n, 1, 7}]//Grid
T[n_, k_]:= Binomial[n+2, 2]*((n+1)^k -n^k); Table[T[k, n-k], {n, 1, 10}, {k, 0, n-1}] (* G. C. Greubel, Jan 22 2019 *)
PROG
(PARI) {T(n, k) = binomial(n+2, 2)*((n+1)^k -(n)^k)};
for(n=1, 10, for(k=0, n-1, print1(T(k, n-k), ", "))) \\ G. C. Greubel, Jan 22 2019
(Magma) [[Binomial(k+2, 2)*((k+1)^(n-k) -k^(n-k)): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Jan 22 2019
(Sage) [[binomial(k+2, 2)*((k+1)^(n-k) -k^(n-k)) for k in (0..n-1)] for n in (1..10)] # G. C. Greubel, Jan 22 2019
(GAP) T:=Flat(List([1..10], n->List([0..n-1], k-> Binomial(k+2, 2)*( (k+1)^(n-k) -k^(n-k)) ))); # G. C. Greubel, Jan 22 2019
CROSSREFS
Cf. A068156 the case for n=2.
Sequence in context: A264364 A330509 A105545 * A027465 A164942 A236420
KEYWORD
nonn,tabl,easy
AUTHOR
Geoffrey Critzer, Dec 27 2010
EXTENSIONS
Terms a(29) onward added by G. C. Greubel, Jan 22 2019
STATUS
approved