OFFSET
1,3
COMMENTS
T(n,k) is the sum of the elements in the image sets of all functions f:{1,2,...,k}->{1,2,...,n}.
Equivalently, the sum of the distinct entries in each length k sequence on {1,2,...,n}.
LINKS
G. C. Greubel, Antidiagonals n = 1..100, flattened
FORMULA
E.g.f. for row n: binomial(n+1,2)*exp((n-1)*x)*(exp(x) - 1).
EXAMPLE
Array begins
1, 1, 1, 1, 1, 1, ...
3, 9, 21, 45, 93, 189, ...
6, 30, 114, 390, 1266, 3990, ...
10, 70, 370, 1750, 7810, 33670, ...
15, 135, 915, 5535, 31515, 172935, ...
21, 231, 1911, 14091, 97671, 651651, ...
MATHEMATICA
Table[Range[7]! Rest[CoefficientList[Series[Binomial[n+1, 2] Exp[(n-1)x](Exp[x]-1), {x, 0, 7}], x]], {n, 1, 7}]//Grid
T[n_, k_]:= Binomial[n+2, 2]*((n+1)^k -n^k); Table[T[k, n-k], {n, 1, 10}, {k, 0, n-1}] (* G. C. Greubel, Jan 22 2019 *)
PROG
(PARI) {T(n, k) = binomial(n+2, 2)*((n+1)^k -(n)^k)};
for(n=1, 10, for(k=0, n-1, print1(T(k, n-k), ", "))) \\ G. C. Greubel, Jan 22 2019
(Magma) [[Binomial(k+2, 2)*((k+1)^(n-k) -k^(n-k)): k in [0..n-1]]: n in [1..10]]; // G. C. Greubel, Jan 22 2019
(Sage) [[binomial(k+2, 2)*((k+1)^(n-k) -k^(n-k)) for k in (0..n-1)] for n in (1..10)] # G. C. Greubel, Jan 22 2019
(GAP) T:=Flat(List([1..10], n->List([0..n-1], k-> Binomial(k+2, 2)*( (k+1)^(n-k) -k^(n-k)) ))); # G. C. Greubel, Jan 22 2019
CROSSREFS
KEYWORD
AUTHOR
Geoffrey Critzer, Dec 27 2010
EXTENSIONS
Terms a(29) onward added by G. C. Greubel, Jan 22 2019
STATUS
approved