Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Mar 04 2020 07:37:15
%S 1,1,1,1,1,1,1,1,2,3,5,7,13,19,49,139,349,814,1999,6239,17319,88463,
%T 352207,1433335,4638463,24497167,115269646,734764861,5312141131,
%U 33794633761,194109246131,1155202458861,11655116287031,94020049884421,1124623970095267
%N a(n) = (a(n-1)*a(n-7) + a(n-2)*a(n-6) - a(n-3)*a(n-5) + a(n-4)^2) / a(n-8), a(0) = ... = a(7) = 1.
%C The sequence is similar to Somos-8 but all of the terms are integers.
%H Seiichi Manyama, <a href="/A330383/b330383.txt">Table of n, a(n) for n = 0..252</a>
%F a(n) = a(7-n) for all n in Z.
%F a(n)*a(n+8) = a(n+1)*a(n+7) + a(n+2)*a(n+6) - a(n+3)*a(n+5) + a(n+4)^2 for all n in Z.
%F a(n)*a(n+9) = -a(n+1)*a(n+8) + 3*a(n+2)*a(n+7) + a(n+3)*a(n+6) + a(n+4)*a(n+5) for all n in Z.
%F 0 = + a(n+6)*a(n+3)*a(n) - a(n+6)*a(n+2)*a(n+1) - a(n+5)*a(n+4)*a(n) - a(n+5)*a(n+3)*a(n+1) + 2*a(n+5)*a(n+2)^2 + 2*a(n+4)^2*a(n+1) - 3*a(n+4)*a(n+3)*a(n+2) + a(n+3)^3 for all n in Z.
%o (PARI) {a(n) = my(v); if( n<0, n=7-n); if( n<8, 1, n++; v=vector(n, k, 1); for( k=9, n, v[k] = (v[k-1]*v[k-7] + v[k-2]*v[k-6] - v[k-3]*v[k-5] + v[k-4]^2) / v[k-8]); v[n])};
%K nonn
%O 0,9
%A _Michael Somos_, Mar 03 2020