login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108309
Consider the triangle of odd numbers where the n-th row has the next n odd numbers. The sequence is the number of primes in the n-th row.
5
0, 2, 2, 3, 2, 3, 3, 4, 4, 5, 3, 4, 6, 4, 6, 6, 4, 6, 7, 6, 8, 7, 5, 8, 9, 8, 7, 8, 9, 8, 9, 10, 10, 8, 10, 12, 5, 12, 12, 13, 9, 11, 11, 9, 13, 14, 9, 14, 14, 10, 10, 19, 14, 12, 12, 12, 12, 16, 15, 16, 15, 13, 18, 16, 16, 12, 16, 17, 15, 16, 18, 14, 15, 20, 18, 19, 14, 19, 20, 18, 16
OFFSET
1,2
COMMENTS
Except for the initial term, a(n)>=2 because in the interval 2n-1 of odd numbers there are always at least two primes.
For n>2, this is the same as the number of primes between n^2-n and n^2+n, which is the sum of A089610 and A094189. - T. D. Noe, Sep 16 2008
a(n) = SUM(A010051(A176271(n,k)): 1<=k<=n). - Reinhard Zumkeller, Apr 13 2010
From Pierre CAMI, Sep 03 2014: (Start)
For n>1 a(n)~floor(1/2 + n/log(n)).
The number of primes < n^2 is ~ n^2/2/log(n) by the prime number theorem, as a(n) ~ floor(1/2 + n/log(n)) we have:
n^2/2/log(n) ~ 1 + floor(1/2 + 2/log(2)) + floor(1/2 + 3/log(3)) + floor(1/2 + 4/log(4)) + ... + floor(1/2 + (n-1)/log(n-1)) + floor(1/2 + n/log(n)).
For n=16000 the number of primes < n^2 is 13991985, the sum: 1 + floor(1/2 + 2/log(2)) + floor(1/2 + 3/log(3)) + floor(1/2 + 4/log(4))+ ... + floor(1/2 + (n-1)/log(n-1)) + floor(1/2 + n/log(n)) is 13991101 and (n^2)/(2*log(n)) is 13222671.
So between n^2+n and n^2+3*n there are n odd numbers and ~floor(1/2 + n/log(n)) prime numbers.
The twin primes are of the form T1=n^2+n-1 and T2=n^2+n+1, or n^2+n+T1 and n^2+n+T2 with T1<=2*n-1, or n^2+n+P and n^2+n+P(-2 or +2) with P prime <=2*n-1.
(End)
EXAMPLE
Triangle begins:
1: 1 -> 0 primes,
2: 3,5 -> 2 primes,
3: 7,9,11 -> 2 primes,
4: 13,15,17,19 -> 3 primes.
MAPLE
seq(numtheory:-pi(n^2+n-1)-numtheory:-pi(n^2-n), n=1..100); # Robert Israel, Sep 03 2014
MATHEMATICA
f[n_] := PrimePi[n^2 + n - 1] - PrimePi[n^2 - n]; Table[f[n], {n, 81}] (* Ray Chandler, Jul 26 2005 *)
PROG
(Haskell)
a108309 = sum . (map a010051) . a176271_row
-- Reinhard Zumkeller, May 24 2012
CROSSREFS
Sequence in context: A029213 A029209 A282630 * A341307 A103469 A337932
KEYWORD
easy,nonn
AUTHOR
Giovanni Teofilatto, Jul 25 2005
EXTENSIONS
Edited and extended by Ray Chandler, Jul 26 2005
STATUS
approved