OFFSET
1,4
COMMENTS
For small values of n, these numbers exhibit higher and lower values as n increases. Conjectures: After n=17 a(n) > 1. There exists an n_1 such that a(n) is < a(n+1) for all n >= n_1.
Same as the number of primes between n^2 and n^2+n. Oppermann conjectured in 1882 that a(n)>0. - T. D. Noe, Sep 16 2008
REFERENCES
Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., 1995, Springer, p. 248.
LINKS
T. D. Noe, Table of n, a(n) for n=1..10000
Wikipedia, Oppermann's conjecture
MATHEMATICA
a[n_] := PrimePi[(n + 1/2)^2] - PrimePi[n^2]; Table[ a@n, {n, 100}] (* Robert G. Wilson v, May 04 2009 *)
PROG
(PARI) a(n) = primepi(n^2+n) - primepi(n^2); \\ Michel Marcus, May 18 2020
(Haskell)
a089610 n = sum $ map a010051' [n^2 .. n*(n+1)]
-- Reinhard Zumkeller, Jun 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 30 2003
STATUS
approved