login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089610
Number of primes between n^2 and (n+1/2)^2.
10
1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 2, 2, 3, 2, 4, 4, 1, 2, 3, 3, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 5, 5, 6, 4, 5, 7, 3, 6, 6, 8, 5, 5, 7, 4, 6, 7, 6, 7, 6, 6, 5, 9, 7, 7, 6, 7, 7, 6, 8, 8, 7, 7, 8, 9, 11, 7, 8, 10, 8, 11, 8, 7, 7, 10, 11, 12, 4, 9, 11, 6, 9, 9, 10, 8, 9, 8, 11, 8, 8, 9, 10, 8, 13, 10, 9, 10, 14, 12
OFFSET
1,4
COMMENTS
For small values of n, these numbers exhibit higher and lower values as n increases. Conjectures: After n=17 a(n) > 1. There exists an n_1 such that a(n) is < a(n+1) for all n >= n_1.
Same as the number of primes between n^2 and n^2+n. Oppermann conjectured in 1882 that a(n)>0. - T. D. Noe, Sep 16 2008
REFERENCES
Paulo Ribenboim, The New Book of Prime Number Records, 3rd ed., 1995, Springer, p. 248.
MATHEMATICA
a[n_] := PrimePi[(n + 1/2)^2] - PrimePi[n^2]; Table[ a@n, {n, 100}] (* Robert G. Wilson v, May 04 2009 *)
PROG
(PARI) a(n) = primepi(n^2+n) - primepi(n^2); \\ Michel Marcus, May 18 2020
(Haskell)
a089610 n = sum $ map a010051' [n^2 .. n*(n+1)]
-- Reinhard Zumkeller, Jun 07 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Dec 30 2003
STATUS
approved