login
A349867
Generalized multiplicative Euler phi function of order 2 (see El Hindi et al. link).
0
1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 4, 1, 4, 2, 2, 8, 8, 2, 6, 2, 2, 4, 10, 1, 8, 4, 6, 2, 12, 2, 8, 16, 4, 8, 4, 2, 12, 6, 4, 2, 16, 2, 12, 4, 4, 10, 22, 8, 12, 8, 8, 4, 24, 6, 8, 2, 6, 12, 28, 2, 16, 8, 4, 32, 8, 4, 20, 8, 10, 4, 24, 2, 24, 12, 8, 6, 8, 4, 24, 16
OFFSET
1,5
LINKS
Mohammad El-Hindi and Therrar Kadri, On The Generalized Multiplicative Euler Phi Function, arXiv:2111.13474 [math.NT], 2021. Gives a formula.
A. N. El-Kassar and H. Y. Chehade, Generalized Group of Units, Math. Balkanica, Vol. 20 (2006), Fasc. 3-4.
Judy L. Smith and Joseph A. Gallian, Factoring Finite Factor Rings, Mathematics Magazine, 58, (1985), 93-95.
PROG
(PARI) phig(n, k) = {my(f=factor(n)); if (k==1, return(eulerphi(f))); for (j=1, #f~, my(p=f[j, 1], alfa=f[j, 2]); if (p % 2, f[j, 1] = if (alfa < k, phig(p-1, k-1)*prod(i=k-alfa+1, k-1, phig(p, i)), phig(p-1, k-1)*p^(alfa-k)*prod(i=1, k-1, phig(p, i))), f[j, 1] = if (alfa < 2*k, 1, 2^(alfa-1)); ); f[j, 2] = 1; ); factorback(f); }
a(n) = phig(n, 2);
CROSSREFS
Sequence in context: A206941 A327790 A143179 * A089610 A102566 A328771
KEYWORD
nonn,mult
AUTHOR
Michel Marcus, Dec 03 2021
STATUS
approved