OFFSET
3,2
COMMENTS
Conjecture: if n > 3, then a(n + 3) is the number of connected components of the subgraph that is vertex-induced on Collatz's graph by the vertex subset {1, ..., n} (see Problem 3.11 of my article, available from the links). - Lorenzo Sauras Altuzarra, Apr 07 2020 [Corrected by Pontus von Brömssen, Jan 22 2021]
LINKS
Colin Barker, Table of n, a(n) for n = 3..1000
M. Koch and S. Kurz, Enumeration of generalized polyominoes, arXiv:math/0605144 [math.CO], 2006.
S. Kurz, k-polyominoes.
Lorenzo Sauras Altuzarra, Some arithmetical problems that are obtained by analyzing proofs and infinite graphs, arXiv:2002.03075 [math.NT], 2020.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
a(n) = floor((n-2)/2) - floor((n-1)/6) + 1.
G.f.: -x^3*(x^6-x^5+x^4-x^3-x-1) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Jan 19 2015
EXAMPLE
a(3)=1 because there is only one polyiamond consisting of 3 triangles and a(4)=2 because there are 2 polyominoes consisting of 3 squares.
MATHEMATICA
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {1, 2, 2, 3, 2, 3, 3}, 80] (* Harvey P. Dale, Sep 18 2016 *)
PROG
(PARI) Vec(-x^3*(x^6-x^5+x^4-x^3-x-1)/((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Sascha Kurz, Feb 07 2005
STATUS
approved