OFFSET

1,10

COMMENTS

Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0,1,2.

EXAMPLE

a(12) counts these partitions: 84, 4431, 4422.

MATHEMATICA

z = 35; t1 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p]], {n, 1, z}] (* A239497 *)

t2 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p]], {n, 1, z}] (* A239498 *)

t3 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p]] == Length[p]], {n, 1, z}] (* A118096 *)

t4 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Length[p]] == Length[p]], {n, 1, z}] (* A239500 *)

t5 = Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p]], {n, 1, z}] (* A239501 *)

CROSSREFS

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 24 2014

STATUS

approved