login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107449
Irregular triangle T(n, k) = 10 - ( (b(n) + k^2 + k + 1) mod 10 ), where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.
2
5, 3, 9, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 9, 7, 3, 7, 9, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3, 5, 5, 3, 9, 3
OFFSET
1,1
LINKS
FORMULA
T(n, k) = 10 - (b(n) + k^2 + k + 1) mod 10, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 24 2024
EXAMPLE
The irregular triangle begins as:
5;
3, 9, 3;
7, 3, 7, 9, 9, 7, 3, 7, 9;
1, 7, 1, 3, 3, 1, 7, 1, 3, 3, 1, 7, 1, 3, 3;
MATHEMATICA
b[n_]:= 2^(n-3)*(9-(-1)^n) -Boole[n==1]/2;
T[n_, k_]:= 10 -Mod[k^2+k+1+b[n], 10];
Table[T[n, k], {n, 8}, {k, b[n]-1}]//Flatten (* G. C. Greubel, Mar 24 2024 *)
PROG
(Magma)
b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
A107448:= func< n, k | 10 - ((b(n) +k^2 +k +1) mod 10) >;
[5, 3, 9, 3] cat [A107448(n, k): k in [1..b(n)-1], n in [3..8]]; // G. C. Greubel, Mar 24 2024
(SageMath)
def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
def A107449(n, k): return 10 - ((b(n) + k^2+k+1)%10);
flatten([[A107449(n, k) for k in range(1, b(n))] for n in range(1, 8)]) # G. C. Greubel, Mar 24 2024
CROSSREFS
Sequence in context: A073243 A134943 A105372 * A155496 A128426 A336057
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, May 26 2005
EXTENSIONS
Edited by G. C. Greubel, Mar 24 2024
STATUS
approved