login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105372
Decimal expansion of Hypergeometric2F1[ -(1/4),3/4,1,1] = sqrt(Pi)/(Gamma[1/4]*Gamma[5/4]).
3
5, 3, 9, 3, 5, 2, 6, 0, 1, 1, 8, 8, 3, 7, 9, 3, 5, 6, 6, 6, 7, 9, 3, 5, 7, 2, 2, 3, 5, 5, 5, 5, 2, 7, 3, 2, 7, 6, 5, 8, 6, 8, 9, 6, 5, 4, 4, 3, 0, 4, 0, 1, 3, 0, 3, 3, 9, 9, 4, 6, 6, 3, 1, 8, 6, 3, 8, 8, 2, 9, 8, 8, 4, 8, 6, 5, 1, 5, 6, 8, 2, 8, 1, 5, 5, 9, 2, 1, 3, 7, 2, 2, 7, 5, 3, 3, 7, 7, 1, 4
OFFSET
0,1
COMMENTS
This constant appears in solution to an ODE considered in A104996, A104997.
LINKS
Andrei Gruzinov, Power of an axisymmetric pulsar, Physical Review Letters, Vol. 94, No. 2 (2005), 021101, preprint, arXiv:astro-ph/0407279, 2004.
FORMULA
Hypergeometric2F1[ -(1/4), 3/4, 1, 1] = Sqrt[Pi]/(Gamma[1/4]*Gamma[5/4]).
From Vaclav Kotesovec, Jun 15 2015: (Start)
4*sqrt(Pi)/Gamma(1/4)^2.
1 / EllipticK(1/sqrt(2)) (Maple notation).
1 / EllipticK[1/2] (Mathematica notation).
(End)
Equals Product_{k>=1} (1 + (-1)^k/(2*k)). - Amiram Eldar, Aug 26 2020
EXAMPLE
0.53935260118837935666793572235555273276586896544304013033994...
MAPLE
evalf(1/EllipticK(1/sqrt(2)), 120); # Vaclav Kotesovec, Jun 15 2015
MATHEMATICA
RealDigits[1/EllipticK[1/2], 10, 120][[1]] (* Vaclav Kotesovec, Jun 15 2015 *)
PROG
(PARI) sqrt(Pi)/(gamma(1/4)*gamma(5/4)) \\ G. C. Greubel, Jan 09 2017
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Zak Seidov, Apr 02 2005
EXTENSIONS
Last digit corrected by Vaclav Kotesovec, Jun 15 2015
STATUS
approved