login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082605 Using Euler's 6-term sequence A014556, we define the partial recurrence relation a(0)=2, a(1)=3, a(2)=5; a(k) = 2*a(k-1) - 1 + (-1)^(k-1)*2^(k-2), 3 <= k <= 5. 5
2, 3, 5, 11, 17, 41, 65, 161, 257, 641, 1025, 2561, 4097, 10241, 16385, 40961, 65537, 163841, 262145, 655361, 1048577, 2621441, 4194305, 10485761, 16777217, 41943041, 67108865, 167772161, 268435457, 671088641, 1073741825, 2684354561 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Using this definition of a(k) we (formally) work backwards towards a(2)=5 to arrive at the formula for a(k) below.

For k >= 3, a(k) has the simple form a(k) = 2^(k-2)*(4 + 1/2*(1 + (-1)^(k+1)) + 1; and it follows by induction that a(k) is congruent to 17 (mod 24) for all k >= 4. Direct calculations show that for k >= 3, the discriminants of the polynomials x^2 + x + a(k), D(k) = 1 - 4*a(k), satisfy the functional equation -D(k) = a(k+2) + 2.

LINKS

Table of n, a(n) for n=0..31.

Index entries for linear recurrences with constant coefficients, signature (1,4,-4).

FORMULA

(a(k))_(k>=0) = 2^(k-2)*(4 + sum((-1)^r, r=2..k-1)) + 1, the empty sums corresponding to k=0, 1, 2 of course taken to be zero.

a(n) = A056486(n-1)+1. - Ralf Stephan, Mar 19 2004

a(2*n) = 2^n + 1. - Georg Fischer, May 15 2019

G.f.: (2+x-6*x^2+2*x^3-2*x^4)/(1-x-4*x^2+4*x^3). - Georg Fischer, May 15 2019

EXAMPLE

a(10) = 1025

MATHEMATICA

LinearRecurrence[{1, 4, -4}, {2, 3, 5, 11, 17}, 32] (* Georg Fischer, May 15 2019 *)

PROG

(PARI) a(n)=if(n<2, if(n<1, 2, 3), if(n%2==0, 4^(n/2)+1, 5/2*4^((n-1)/2)+1))

CROSSREFS

Cf. A014556, A056486. a(0..6) and a(2*n) same as A085613(n+1).

Sequence in context: A014556 A062737 A085613 * A007755 A060611 A077497

Adjacent sequences:  A082602 A082603 A082604 * A082606 A082607 A082608

KEYWORD

nonn,easy

AUTHOR

Johan Meyer & Ben de la Rosa (meyerjh.sci(AT)mail.uovs.ac.za), May 23 2003

EXTENSIONS

More terms from Ralf Stephan, Mar 19 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 07:58 EDT 2019. Contains 327168 sequences. (Running on oeis4.)