login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105220
Trajectory of 1 under the morphism 1->{1,2,1}, 2->{2,2,2}.
4
1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,2
COMMENTS
Dekking substitution for the Cantor set: characteristic polynomial = x^2 - 5*x + 6 of matrix [2, 0; 1, 3].
This substitution is useful for computing the devil's staircase by bb=aa/. 1->1/3/. 2->0 /. 3->0; ListPlot[FoldList[Plus, 0, bb], PlotRange -> All, PlotJoined -> True, Axes ->False];
The Wikipedia article on L-system Example 3 is "Cantor dust" given by the axiom: A and rules: A -> ABA, B -> BBB. This is isomorphic to the system given in the sequence name. - Michael Somos, Jan 12 2015
LINKS
F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no. 1, 1982, page 99, section 4.15
Wikipedia, L-system Example 3: Cantor dust
FORMULA
a(n) = 2 - A088917(n) = 1 + A316829(n). - Antti Karttunen, Aug 24 2019
a(n) = 2 if the ternary expansion of n contains the digit 1, otherwise a(n) = 1. - Joerg Arndt, Aug 24 2019
MATHEMATICA
Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {2, 2, 2}} &], {1}, 5]]
PROG
(PARI)
A088917(n) = { while(n, if(n%3==1, return(0), n\=3)); (1); }; \\ Originally from A005823
A105220(n) = (2-A088917(n)); \\ Antti Karttunen, Aug 23 2019
CROSSREFS
Sequence in context: A115588 A240471 A263569 * A083654 A164878 A319695
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Apr 29 2005
STATUS
approved