The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105222 Smallest integer m > 1 such that m^(n-1) == 1 (mod n). 4
 2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, 16, 9, 2, 55, 21, 57, 20, 59, 2, 61, 2, 63, 8, 65, 8, 25, 2, 69, 22, 11, 2, 73, 2, 75, 26 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Composite n are Fermat pseudoprimes to base a(n). For n > 1; (5+(-1)^n)/2 <= a(n) <= n+(-1)^n. If n > 2 and a(n) > 2 then n is composite. - Thomas Ordowski, Dec 01 2013 LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Fermat Pseudoprime Wikipedia, Fermat pseudoprime FORMULA a(p) = 2 for odd prime p. EXAMPLE We have 2^(2-1) == 0, 3^(2-1) == 1 (mod 2), so a(2) = 3. MATHEMATICA Table[k = 2; While[PowerMod[k, n - 1, n] != 1, k++]; k, {n, 2, 100}] (* T. D. Noe, Dec 07 2013 *) PROG (PARI) a(n) = {m = 2; while ((m^(n-1) % n) !=  lift(Mod(1, n)), m++); m; } \\ Michel Marcus, Dec 01 2013 (PARI) a(n) = my(m=2); while(Mod(m, n)^(n-1)!=1, m++); m \\ Charles R Greathouse IV, Dec 01 2013 CROSSREFS Cf. A007535, A181780, A239452. Sequence in context: A007388 A057815 A007387 * A280503 A094757 A095171 Adjacent sequences:  A105219 A105220 A105221 * A105223 A105224 A105225 KEYWORD easy,nonn AUTHOR Max Alekseyev, Apr 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:51 EDT 2020. Contains 337321 sequences. (Running on oeis4.)