login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Trajectory of 1 under the morphism 1->{1,2,1}, 2->{2,2,2}.
4

%I #18 Sep 28 2019 22:18:05

%S 1,2,1,2,2,2,1,2,1,2,2,2,2,2,2,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,2,2,2,2,

%T 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,2,2,

%U 2,2,2,2,1,2,1,2,2,2,1,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

%N Trajectory of 1 under the morphism 1->{1,2,1}, 2->{2,2,2}.

%C Dekking substitution for the Cantor set: characteristic polynomial = x^2 - 5*x + 6 of matrix [2, 0; 1, 3].

%C This substitution is useful for computing the devil's staircase by bb=aa/. 1->1/3/. 2->0 /. 3->0; ListPlot[FoldList[Plus, 0, bb], PlotRange -> All, PlotJoined -> True, Axes ->False];

%C The Wikipedia article on L-system Example 3 is "Cantor dust" given by the axiom: A and rules: A -> ABA, B -> BBB. This is isomorphic to the system given in the sequence name. - _Michael Somos_, Jan 12 2015

%H Antti Karttunen, <a href="/A105220/b105220.txt">Table of n, a(n) for n = 0..19682</a>

%H F. M. Dekking, <a href="http://dx.doi.org/10.1016/0001-8708(82)90066-4">Recurrent Sets</a>, Advances in Mathematics, vol. 44, no. 1, 1982, page 99, section 4.15

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/L-system#Example_3:_Cantor_dust">L-system</a> Example 3: Cantor dust

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>

%F a(n) = 2 - A088917(n) = 1 + A316829(n). - _Antti Karttunen_, Aug 24 2019

%F a(n) = 2 if the ternary expansion of n contains the digit 1, otherwise a(n) = 1. - _Joerg Arndt_, Aug 24 2019

%t Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {2, 2, 2}} &], {1}, 5]]

%o (PARI)

%o A088917(n) = { while(n, if(n%3==1, return(0), n\=3)); (1); }; \\ Originally from A005823

%o A105220(n) = (2-A088917(n)); \\ _Antti Karttunen_, Aug 23 2019

%Y Cf. A088917, A316829.

%K nonn

%O 0,2

%A _Roger L. Bagula_, Apr 29 2005