|
|
A104738
|
|
Positions of records in A104706.
|
|
5
|
|
|
1, 2, 3, 5, 6, 9, 11, 15, 17, 21, 24, 29, 30, 39, 41, 51, 54, 59, 66, 75, 77, 87, 96, 105, 107, 120, 129, 137, 141, 161, 165, 180, 186, 201, 209, 221, 227, 249, 255, 270, 285, 306, 311, 324, 336, 359, 366, 390, 401, 420, 435, 459, 465, 495, 501, 527, 534
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The entries in this sequence are the same as the partial sums of the independently derived A204539, for reasons unknown at present. - Colm Fagan, Jan 23 2012
|
|
LINKS
|
|
|
MATHEMATICA
|
A104706 = NestList[Rest[Insert[#, #[[1]], 2 + 2 #[[1]]]]&, Range[m = 1000], m][[All, 1]];
|
|
PROG
|
(BASIC) n=n+1; temp1=n^2; for k=(n-1) step -1 to 2; temp2=int(temp1/k); temp1=k*temp2; if int((temp2+k)/2))*2<>(temp2+k) then temp1=temp1-k; next k; a(n-1)=temp1/4 ' Colm Fagan, Nov 08 2015
(PARI) a(n) = {n++; temp1 = n^2; forstep (k= n-1, 2, -1, temp2 = temp1\k; temp1 = k*temp2; if (((temp2+k)\2)*2 != (temp2+k), temp1 -= k)); temp1/4; } \\ after Basic; Michel Marcus, Dec 04 2015
(MATLAB)
% Produce a(1) : a(N)
M = N;
R = [1:M];
v = 1;
A = 1;
count = 1;
n = 1;
while count < N
n = n+1;
if 2*R(1)+1 > M
R = [R, (M+1):M+N];
end
R = [R(2:2*R(1)+1), R(1), R((2*R(1)+2) : M)];
if R(1) > v
A = [A, n];
v = R(1);
count = count+1;
end
end
end;
|
|
CROSSREFS
|
See A002491 for a conjectured connection to this sequence.
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|