login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104706
First terms in the rearrangements of integer numbers (see comments).
5
1, 2, 3, 1, 4, 5, 1, 2, 6, 1, 7, 3, 1, 2, 8, 1, 9, 4, 1, 2, 10, 1, 3, 11, 1, 2, 5, 1, 12, 13, 1, 2, 3, 1, 4, 6, 1, 2, 14, 1, 15, 3, 1, 2, 7, 1, 5, 4, 1, 2, 16, 1, 3, 17, 1, 2, 8, 1, 18, 6, 1, 2, 3, 1, 4, 19, 1, 2, 5, 1, 9, 3, 1, 2, 20, 1, 21, 4, 1, 2, 7, 1, 3, 10, 1, 2, 22, 1, 5, 6, 1, 2, 3, 1, 4, 23, 1
OFFSET
1,2
COMMENTS
Take the sequence of natural numbers:
s0=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
Move the first term s(1)=1 to 2*1 places to the right:
s1=2,3,1,4,5,6,7,8,9,10,11,12,13,14,15,16,
Move the first term s(1)=2 to 2*2 places to the right:
s2=3,1,4,5,2,6,7,8,9,10,11,12,13,14,15,16,
Repeating the procedure we get successively:
s3=1,4,5,2,6,7,3,8,9,10,11,12,13,14,15,16,
s4=4,5,1,2,6,7,3,8,9,10,11,12,13,14,15,16,
s5=5,1,2,6,7,3,8,9,4,10,11,12,13,14,15,16,
s6=1,2,6,7,3,8,9,4,10,11,5,12,13,14,15,16,
.......................................................................
s100=8,3,1,2,24,25,4,5,12,7,6,26,9,27,13,28,29,10,14,30,31,15,11,
32,33,16,34,35,17,36,37,18,38,39,19,40,41,20,42,43,21,44,45,22,
46,47,23,48,49,50,51,52,53,54,55,56,57,58,59,60,
The sequence A104706 gives the first terms in the rearrangements s0,s1,s2,...,s100. Cf. A104705
LINKS
FORMULA
a(n) = A028920(2n-1)-1. - Benoit Cloitre, Mar 09 2007
MAPLE
A104706:= proc(N) # to produce a(1) .. a(N)
local A, R, n, M;
M:= N;
R:= $1..M;
A[1]:= 1;
for n from 2 to N do
if 2*R[1]+1 > M then
R:= R, [$M+1..M+N]
fi;
R:= R[2..2*R[1]+1], R[1], R[2*R[1]+2..N];
A[n]:= R[1];
od:
seq(A[n], n=1..N);
end proc:
A104706(100); # Robert Israel, Dec 04 2015
MATHEMATICA
s=Range[100]; bb={1}; Do[s=Drop[Insert[s, s[[1]], 2+2s[[1]]], 1]; bb=Append[bb, s[[1]]], {i, 100}]; bb
NestList[Rest[Insert[#, #[[1]], 2 + 2 #[[1]]]] &, Range[30], 30][[All, 1]] (* Birkas Gyorgy, Mar 03 2011 *)
PROG
(Sage)
def A104706(n):
m, N = 2, 2*n-1
while true:
if m.divides(N): return m-2
N = N*(m-1)//m
m += 1
print([A104706(n) for n in (1..97)]) # Peter Luschny, Dec 04 2015
CROSSREFS
Sequence in context: A329721 A193790 A055446 * A366796 A094137 A038802
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Mar 19 2005
STATUS
approved