login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104622
Indices of prime values of heptanacci-Lucas numbers A104621.
5
0, 2, 3, 5, 7, 10, 17, 24, 25, 26, 28, 38, 40, 49, 62, 79, 89, 114, 140, 145, 182, 248, 353, 437, 654, 702, 784, 921, 931, 986, 1206, 2136, 2137, 3351, 5411, 13264, 13757, 16348, 27087, 27160
OFFSET
1,2
COMMENTS
The 7th-order linear recurrence A104622 (heptanacci-Lucas numbers) is a generalization of the Lucas sequence A000032. T. D. Noe and I have noted that the heptanacci-Lucas numbers have many more primes than the corresponding heptanacci (see A104414) which he found has only the first 3 primes that I identified through the first 5000 values, whereas these heptanacci-Lucas numbers have 17 primes among the first 100 values. For semiprimes in heptanacci-Lucas numbers, see A104623.
LINKS
Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math.CO/0210201 v1, Oct 14 2002
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
FORMULA
Prime values of the heptanacci-Lucas numbers, which are defined by: a(0) = 7, a(1) = 1, a(2) = 3, a(3) = 7, a(4) = 15, a(5) = 31, a(6) = 63, for n > 6: a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7).
EXAMPLE
A104621(0) = 7,
A104621(2) = 3,
A104621(3) = 7,
A104621(5) = 31,
A104621(7) = 127,
A104621(10) = 983,
A104621(17) = 122401,
A104621(24) = 15231991.
MATHEMATICA
a[0] = 7; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[5] = 31; a[6] = 63; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3] + a[n - 4] + a[n - 5] + a[n - 6] + a[n - 7]; Do[ If[ PrimeQ[ a[n]], Print[n]], {n, 5000}] (* Robert G. Wilson v, Mar 17 2005 *)
Flatten[Position[LinearRecurrence[{1, 1, 1, 1, 1, 1, 1}, {7, 1, 3, 7, 15, 31, 63}, 28000], _?PrimeQ]]-1 (* Harvey P. Dale, Jan 02 2016 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 17 2005
EXTENSIONS
More terms from T. D. Noe and Robert G. Wilson v, Mar 17 2005
STATUS
approved