login
A103716
Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).
2
1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
OFFSET
1,2
COMMENTS
a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.
For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.
FORMULA
a(n) = numerator(sum_{k=1..n} 1/k^10).
G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).
MATHEMATICA
s=0; lst={}; Do[s+=n^1/n^11; AppendTo[lst, Numerator[s]], {n, 3*4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 24 2009 *)
Table[ HarmonicNumber[n, 10] // Numerator, {n, 1, 10}] (* Jean-François Alcover, Dec 04 2013 *)
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Feb 15 2005
STATUS
approved