login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272672
Numbers n such that the decimal concatenations 1n and 2n are both squares.
3
1025, 102500, 1390625, 10250000, 96700625, 139062500, 1025000000, 9670062500, 13906250000, 102500000000, 967006250000, 1390625000000, 10250000000000, 17654697265625, 96700625000000, 139062500000000, 910400191015625
OFFSET
1,1
COMMENTS
The sequence is infinite because all the numbers 1025*100^k are members.
It would be nice to have the subsequence of "primitive" terms, those that do not end in an even number of zeros.
Let v be a number such that v^2 starts with 1. Let w^2 have the same digits as v^2 except that the initial digit is a 2. Then (w + v) * (w - v) = w^2 - v^2 = 10^m for some integer m. For the "primitive" terms, w + v turns out to be 250, 8000, 31250 etc. w - v turns out to be 40, 1250, 3200 etc. Given such w + v and w - v it is easy to find primitive elements. Furthermore, v must lie in (sqrt(11), sqrt(20)) * sqrt(10)^i and w must lie in (sqrt(21), sqrt(30)) * sqrt(10)^i for some integer i. - David A. Corneth, May 20 2016
EXAMPLE
1025 is a member because 11025 = 105^2 and 21025 = 145^2.
MAPLE
t1:=[];
for k from 1 to 2000000 do
if issqr(k+10^length(k)) and
issqr(k+2*10^length(k)) then t1:=[op(t1), k]; fi;
od;
t1;
PROG
(PARI) is(n)=issquare(eval(Str(1, n))) && issquare(eval(Str(2, n))) \\ Charles R Greathouse IV, May 20 2016
(Magma) [n: n in [1..10000000 ] | IsSquare(Seqint(Intseq(n) cat Intseq(1))) and IsSquare(Seqint(Intseq(n) cat Intseq(2)))]; // Marius A. Burtea, Mar 21 2019
CROSSREFS
Sequence in context: A023002 A279643 A168119 * A180270 A103716 A291508
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
a(5)-a(17) from Alois P. Heinz, May 20 2016
STATUS
approved