login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103420
Number of compositions of n in which the least part is even.
4
0, 1, 0, 2, 2, 4, 5, 11, 17, 28, 44, 75, 123, 203, 330, 541, 883, 1444, 2357, 3848, 6271, 10214, 16624, 27051, 43995, 71523, 116223, 188790, 306554, 497624, 807553, 1310177, 2125126, 3446237, 5587517, 9057611, 14680337, 23789891, 38546834, 62449682, 101163024
OFFSET
1,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2000 (first 1000 terms from Robert Israel)
FORMULA
G.f.: Sum((1-x)^2*x^(2*n)/((1-x-x^(2*n))*(1-x-x^(2*n+1))), n=1..infinity).
G.f.: Sum(x^(2*n)/((1-x)^n*(1+x^n)),n=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-1). - Vaclav Kotesovec, May 01 2014
MAPLE
N:= 50: # for a(1) .. a(N)
G:= add(x^(2*n)/((1-x)^n*(1+x^n)), n=1..N/2):
S:= series(G, x, N+1):
[seq(coeff(S, x, i), i=1..N)]; # Robert Israel, Oct 23 2024
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1-
irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
end:
a:= n-> b(n, infinity):
seq(a(n), n=1..42); # Alois P. Heinz, Oct 23 2024
MATHEMATICA
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 04 2005
EXTENSIONS
More terms from Robert G. Wilson v, Feb 05 2005
STATUS
approved