OFFSET
1,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2000 (first 1000 terms from Robert Israel)
FORMULA
G.f.: Sum((1-x)^2*x^(2*n)/((1-x-x^(2*n))*(1-x-x^(2*n+1))), n=1..infinity).
G.f.: Sum(x^(2*n)/((1-x)^n*(1+x^n)),n=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-1). - Vaclav Kotesovec, May 01 2014
MAPLE
N:= 50: # for a(1) .. a(N)
G:= add(x^(2*n)/((1-x)^n*(1+x^n)), n=1..N/2):
S:= series(G, x, N+1):
[seq(coeff(S, x, i), i=1..N)]; # Robert Israel, Oct 23 2024
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1-
irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
end:
a:= n-> b(n, infinity):
seq(a(n), n=1..42); # Alois P. Heinz, Oct 23 2024
MATHEMATICA
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Vladeta Jovovic, Feb 04 2005
EXTENSIONS
More terms from Robert G. Wilson v, Feb 05 2005
STATUS
approved