login
A103420
Number of compositions of n in which the least part is even.
4
0, 1, 0, 2, 2, 4, 5, 11, 17, 28, 44, 75, 123, 203, 330, 541, 883, 1444, 2357, 3848, 6271, 10214, 16624, 27051, 43995, 71523, 116223, 188790, 306554, 497624, 807553, 1310177, 2125126, 3446237, 5587517, 9057611, 14680337, 23789891, 38546834, 62449682, 101163024
OFFSET
1,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2000 (first 1000 terms from Robert Israel)
FORMULA
G.f.: Sum((1-x)^2*x^(2*n)/((1-x-x^(2*n))*(1-x-x^(2*n+1))), n=1..infinity).
G.f.: Sum(x^(2*n)/((1-x)^n*(1+x^n)),n=1..infinity). - Vladeta Jovovic, Mar 02 2008
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n-1). - Vaclav Kotesovec, May 01 2014
MAPLE
N:= 50: # for a(1) .. a(N)
G:= add(x^(2*n)/((1-x)^n*(1+x^n)), n=1..N/2):
S:= series(G, x, N+1):
[seq(coeff(S, x, i), i=1..N)]; # Robert Israel, Oct 23 2024
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1-
irem(m, 2), add(b(n-j, min(m, j)), j=1..n))
end:
a:= n-> b(n, infinity):
seq(a(n), n=1..42); # Alois P. Heinz, Oct 23 2024
MATHEMATICA
Rest[ CoefficientList[ Series[ Expand[ Sum[(1 - x)^2*x^(2n)/((1 - x - x^(2n))*(1 - x - x^(2n + 1))), {n, 40}]], {x, 0, 40}], x]] (* Robert G. Wilson v, Feb 05 2005 *)
KEYWORD
easy,nonn,changed
AUTHOR
Vladeta Jovovic, Feb 04 2005
EXTENSIONS
More terms from Robert G. Wilson v, Feb 05 2005
STATUS
approved