login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103242
Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
1
1, 3, 1, 39, 8, 1, 1206, 176, 15, 1, 69189, 7784, 495, 24, 1, 6416568, 585408, 29430, 1104, 35, 1, 881032059, 67481928, 2791125, 84600, 2135, 48, 1, 168514815360, 11111547520, 389244600, 9841728, 204470, 3744, 63, 1, 42934911510249
OFFSET
1,2
COMMENTS
Define a triangular matrix P where P(n,k) = (-k^2-2*k)^(n-k)/(n-k)!; then M = P*D*P^-1 = A103236 satisfies M^2 + 2*M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082171 as a triangular matrix. The first column is A082163 (enumerates acyclic automata with 2 inputs).
FORMULA
For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(1-(m+1)^2)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(1-(k+1)^2)^(j-k)*T(n, j).
EXAMPLE
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[3/1!, 1/0!],
[39/2!, 8/1!, 1/0!],
[1206/3!, 176/2!, 15/1!, 1/0!],
[69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
[6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
[1/0!],
[ -3/1!, 1/0!],
[9/2!, -8/1!, 1/0!],
[ -27/3!, 64/2!, -15/1!, 1/0!],
[81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
[ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
PROG
(PARI) {T(n, k)=my(P); if(n>=k&k>=1, P=matrix(n, n, r, c, if(r>=c, (1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n<k||k<1, 0, (P^-1)[n, k]*(n-k)!))}
CROSSREFS
KEYWORD
nonn,tabl,frac
AUTHOR
Paul D. Hanna, Feb 02 2005
STATUS
approved