Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 21 2024 00:28:05
%S 1,3,1,39,8,1,1206,176,15,1,69189,7784,495,24,1,6416568,585408,29430,
%T 1104,35,1,881032059,67481928,2791125,84600,2135,48,1,168514815360,
%U 11111547520,389244600,9841728,204470,3744,63,1,42934911510249
%N Unreduced numerators of the elements T(n,k)/(n-k)!, read by rows, of the triangular matrix P^-1, which is the inverse of the matrix defined by P(n,k) = (1-(k+1)^2)^(n-k)/(n-k)! for n >= k >= 1.
%C Define a triangular matrix P where P(n,k) = (-k^2-2*k)^(n-k)/(n-k)!; then M = P*D*P^-1 = A103236 satisfies M^2 + 2*M = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082171 as a triangular matrix. The first column is A082163 (enumerates acyclic automata with 2 inputs).
%F For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(1-(m+1)^2)^(n-m)*T(m, k).
%F For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(1-(k+1)^2)^(j-k)*T(n, j).
%e Rows of unreduced fractions T(n,k)/(n-k)! begin:
%e [1/0!],
%e [3/1!, 1/0!],
%e [39/2!, 8/1!, 1/0!],
%e [1206/3!, 176/2!, 15/1!, 1/0!],
%e [69189/4!, 7784/3!, 495/2!, 24/1!, 1/0!],
%e [6416568/5!, 585408/4!, 29430/3!, 1104/2!, 35/1!, 1/0!], ...
%e forming the inverse of matrix P where P(n,k) = A103247(n,k)/(n-k)!:
%e [1/0!],
%e [ -3/1!, 1/0!],
%e [9/2!, -8/1!, 1/0!],
%e [ -27/3!, 64/2!, -15/1!, 1/0!],
%e [81/4!, -512/3!, 225/2!, -24/1!, 1/0!],
%e [ -243/5!, 4096/4!, -3375/3!, 576/2!, -35/1!, 1/0!], ...
%o (PARI) {T(n,k)=my(P);if(n>=k&k>=1, P=matrix(n,n,r,c,if(r>=c,(1-(c+1)^2)^(r-c)/(r-c)!))); return(if(n<k||k<1,0,(P^-1)[n,k]*(n-k)!))}
%Y Cf. A103247, A103236, A082171, A082163.
%K nonn,tabl,frac
%O 1,2
%A _Paul D. Hanna_, Feb 02 2005