OFFSET
1,4
COMMENTS
Define a triangular matrix P where P(n,k) = (-k^2)^(n-k)/(n-k)!; then M = P*D*P^-1 = A102086 satisfies M^2 = SHIFTUP(M) where D is the diagonal matrix consisting of {1,2,3,...}. The operation SHIFTUP(M) shifts each column of M up 1 row. Essentially equal to square array A082169 as a triangular matrix. The first column is A082157 (enumerates acyclic automata with 2 inputs).
FORMULA
For n > k >= 1: 0 = Sum_{m=k..n} C(n-k, m-k)*(-m^2)^(n-m)*T(m, k).
For n > k >= 1: 0 = Sum_{j=k..n} C(n-k, j-k)*(-k^2)^(j-k)*T(n, j).
EXAMPLE
Rows of unreduced fractions T(n,k)/(n-k)! begin:
[1/0!],
[1/1!, 1/0!],
[7/2!, 4/1!, 1/0!],
[142/3!, 56/2!, 9/1!, 1/0!],
[5941/4!, 1780/3!, 207/2!, 16/1!, 1/0!],
[428856/5!, 103392/4!, 9342/3!, 544/2!, 25/1!, 1/0!],
[47885899/6!, 9649124/5!, 709893/4!, 32848/3!, 1175/2!, 36/1!, 1/0!], ...
forming the inverse of matrix P where P(n,k) = A103245(n,k)/(n-k)!:
[1/0!],
[-1/1!, 1/0!],
[1/2!, -4/1!, 1/0!],
[-1/3!, 16/2!, -9/1!, 1/0!],
[1/4!, -64/3!, 81/2!, -16/1!, 1/0!], ...
PROG
(PARI) {T(n, k)=my(P); if(n>=k&k>=1, P=matrix(n, n, r, c, if(r>=c, (-c^2)^(r-c)/(r-c)!))); return(if(n<k||k<1, 0, (P^-1)[n, k]*(n-k)!))}
CROSSREFS
KEYWORD
AUTHOR
Paul D. Hanna, Feb 02 2005
STATUS
approved