login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103245
Triangle read by rows: T(n,k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.
2
1, 3, 2, 10, 10, 5, 35, 42, 35, 13, 126, 168, 180, 117, 34, 462, 660, 825, 715, 374, 89, 1716, 2574, 3575, 3718, 2652, 1157, 233, 6435, 10010, 15015, 17745, 15470, 9345, 3495, 610, 24310, 38896, 61880, 80444, 80920, 60520, 31688, 10370, 1597, 92378
OFFSET
0,2
REFERENCES
S. G. Guba, Problem No. 174, Issue No. 4, July-August 1965, p. 73 of Matematika v Skole.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
V. E. Hoggatt, Jr. and L. Carlitz, Problem H-77, The Fibonacci Quarterly, 5, No. 3, 1967, 256-258.
FORMULA
T(n, k) = binomial(2n+1, n-k)*Fibonacci(2k+1), 0 <= k <= n.
EXAMPLE
Triangle begins:
1;
3, 2;
10, 10, 5;
35, 42, 35, 13;
126, 168, 180, 117, 34;
MAPLE
with(combinat): T:=(n, k)->binomial(2*n+1, n-k)*fibonacci(2*k+1): for n from 0 to 9 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
Table[Binomial[2 n + 1, n - k] Fibonacci[2 k + 1], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2019 *)
CROSSREFS
Column 0 is A001700.
Column 1 is A024483.
T(n, n) = A001519(n+1) (the odd-indexed Fibonacci numbers).
Row sums are the powers of 5 (A000351).
Alternating row sums yield A054108.
Sequence in context: A214844 A214966 A367300 * A019242 A064367 A113980
KEYWORD
nonn,tabl,changed
AUTHOR
Emeric Deutsch, Mar 19 2005
STATUS
approved