login
A103248
Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.
2
16, 24, 36, 44, 56, 60, 64, 68, 76, 84, 88, 92, 96, 100, 104, 116, 120, 124, 128, 132, 136, 140, 144, 152, 156, 160, 164, 168, 172, 176, 184, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 236, 240, 244, 252, 256, 264, 272, 276, 280, 284, 288, 296, 300, 304
OFFSET
1,1
LINKS
Chenglong Zou, Peter Otzen, Cino Hilliard, Pythagorean triplets, digest of 6 messages in mathfun Yahoo group, Mar 19, 2005.
EXAMPLE
x=16, y=63, 16^2 + 63^2 = 65^2. 16 is the 1st entry in the list.
PROG
(PARI) pythtri(n) = { local(a, b, c=0, k, x, y, z, vx, vy, wx, wyj); wx=wy= vector(n*n); for(a=1, n, for(b=1, n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x, y)==1&gcd(x, z)==1&gcd(y, z)==1, c++; wy[c]=y; wx[c]=x; print(x", "y", "z); \ write("pythtri.txt", x", "y", "z); ) ) ) ); vy=vx=vector(c); wy=vecsort(wy); wx=vecsort(wx); for(j=1, n*n, if(wx[j]>0, k++; vx[k]=wx[j]; ); ); for(j=1, 200, if(vx[j+1]<>vx[j], print1(vx[j]", ")) ) }
CROSSREFS
Sequence in context: A307341 A046370 A376704 * A286195 A140135 A349241
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Mar 19 2005
STATUS
approved