login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102660 List of Lyndon words on {1,2,3} sorted first by length and then lexicographically. 8
1, 2, 3, 12, 13, 23, 112, 113, 122, 123, 132, 133, 223, 233, 1112, 1113, 1122, 1123, 1132, 1133, 1213, 1222, 1223, 1232, 1233, 1322, 1323, 1332, 1333, 2223, 2233, 2333, 11112, 11113, 11122, 11123, 11132, 11133, 11212, 11213, 11222, 11223, 11232 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

F. Bassino, J. Clement and C. Nicaud, The standard factorization of Lyndon words: an average point of view, Discrete Math. 290 (2005), 1-25.

Reinhard Zumkeller, Haskell programs for some sequences concerning Lyndon words

Wikipedia, Lyndon word

Index entries for sequences related to Lyndon words

FORMULA

Equals A239016 intersect A239017. - M. F. Hasler, Mar 09 2014

PROG

(Haskell)  cf. link.

(PARI) is_A102660(n)=is_A239016(n)&&is_A239017(n)

for(n=1, 5, p=vector(n, i, 10^(n-i))~; forvec(d=vector(n, i, [1, 3]), is_A102660(m=d*p)&&print1(m", "))) \\ M. F. Hasler, Mar 09 2014

CROSSREFS

Cf. A074650, A001037, A102659, A210584, A210585.

Cf. A027376.

Sequence in context: A157899 A157900 A157902 * A081347 A309176 A074347

Adjacent sequences:  A102657 A102658 A102659 * A102661 A102662 A102663

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Feb 03 2005

EXTENSIONS

More terms from John W. Layman, Jan 24 2006

Definition improved by Reinhard Zumkeller, Mar 23 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 23:23 EDT 2020. Contains 337346 sequences. (Running on oeis4.)