

A102660


List of Lyndon words on {1,2,3} sorted first by length and then lexicographically.


8



1, 2, 3, 12, 13, 23, 112, 113, 122, 123, 132, 133, 223, 233, 1112, 1113, 1122, 1123, 1132, 1133, 1213, 1222, 1223, 1232, 1233, 1322, 1323, 1332, 1333, 2223, 2233, 2333, 11112, 11113, 11122, 11123, 11132, 11133, 11212, 11213, 11222, 11223, 11232
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
F. Bassino, J. Clement and C. Nicaud, The standard factorization of Lyndon words: an average point of view, Discrete Math. 290 (2005), 125.
Reinhard Zumkeller, Haskell programs for some sequences concerning Lyndon words
Wikipedia, Lyndon word
Index entries for sequences related to Lyndon words


FORMULA

Equals A239016 intersect A239017.  M. F. Hasler, Mar 09 2014


PROG

(Haskell) cf. link.
(PARI) is_A102660(n)=is_A239016(n)&&is_A239017(n)
for(n=1, 5, p=vector(n, i, 10^(ni))~; forvec(d=vector(n, i, [1, 3]), is_A102660(m=d*p)&&print1(m", "))) \\ M. F. Hasler, Mar 09 2014


CROSSREFS

Cf. A074650, A001037, A102659, A210584, A210585.
Cf. A027376.
Sequence in context: A157899 A157900 A157902 * A081347 A309176 A074347
Adjacent sequences: A102657 A102658 A102659 * A102661 A102662 A102663


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Feb 03 2005


EXTENSIONS

More terms from John W. Layman, Jan 24 2006
Definition improved by Reinhard Zumkeller, Mar 23 2012


STATUS

approved



