login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309176
a(n) = n^2 * (n + 1)/2 - Sum_{k=1..n} sigma_2(k).
2
0, 0, 2, 3, 12, 13, 33, 40, 66, 81, 135, 135, 212, 249, 319, 354, 489, 511, 681, 725, 876, 981, 1233, 1235, 1509, 1660, 1920, 2032, 2437, 2472, 2936, 3091, 3488, 3755, 4275, 4290, 4955, 5292, 5854, 6024, 6843, 6968, 7870, 8190, 8839, 9340, 10420, 10442, 11568, 12038, 13014, 13474, 14851, 15098, 16436
OFFSET
1,3
LINKS
FORMULA
G.f.: x * (1 + 2*x)/(1 - x)^4 - (1/(1 - x)) * Sum_{k>=1} k^2 * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} (n mod k) * k.
a(n) = A002411(n) - A064602(n).
MATHEMATICA
Table[n^2 (n + 1)/2 - Sum[DivisorSigma[2, k], {k, 1, n}], {n, 1, 55}]
nmax = 55; CoefficientList[Series[x (1 + 2 x)/(1 - x)^4 - 1/(1 - x) Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[Sum[Mod[n, k] k, {k, 1, n}], {n, 1, 55}]
PROG
(PARI) a(n) = n^2*(n+1)/2 - sum(k=1, n, sigma(k, 2)); \\ Michel Marcus, Sep 18 2021
(Python)
from math import isqrt
def A309176(n): return (n**2*(n+1)>>1)+((s:=isqrt(n))**2*(s+1)*(2*s+1)-sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1, s+1)))//6 # Chai Wah Wu, Oct 21 2023
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2019
STATUS
approved